{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A Gentle Introduction to Partial Pooled models\n", "\n", "In this blog, we'll learn about the partial pooled models and where they are useful. In addition, we'll use PyMC framework to implement a simple partial pooled model.\n", "\n", "I'll also derive the equations for parameters involved in these models (which will hopefully be fun to read). So, lets get started!\n", "\n", "## A practical example\n", "\n", "Lets take a practical example to understand partial pooled models and related variants.\n", "\n", "Imagine you are a data scientist tasked with analyzing the academic performance of students across various schools in a city. Each school caters to a unique demographic, with varying resources and teaching methods. Your goal is to estimate the average exam scores of students in different schools. However, you face a challenge – some schools have a large number of students with comprehensive data, while other schools are smaller and have limited data available.\n", "\n", "Now lets create some representative data for this task. I'll refer school as a group in some contexts below." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Necessary imports\n", "import pymc as pm\n", "import pandas as pd\n", "import numpy as np\n", "import arviz as az\n", "\n", "from typing import List\n", "import matplotlib.pyplot as plt\n", "\n", "%config InlineBackend.figure_format = 'retina'\n", "RANDOM_SEED = 42\n", "az.style.use('arviz-darkgrid')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# The total number of schools in the city\n", "num_of_schools = 50\n", "\n", "# The number of data samples (students) for each school. \n", "data_samples_per_school = np.random.randint(2, 100, size=num_of_schools)\n", "\n", "# The average performance of students in the city. Lets say the performance is measured out of 100\n", "true_global_mean = 63\n", "\n", "# The variation around the global mean, which represents the average performance of students across all schools, follows a normal distribution with a mean of 63 and a standard deviation of 2.\n", "true_global_variability = 2\n", "\n", "# The variability in the exam scores within each school\n", "within_school_variability = 10" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
School IDscore
Student ID
16973364.510645
314662.005591
17863567.453794
17303573.349892
12242356.454934
\n", "
" ], "text/plain": [ " School ID score\n", "Student ID \n", "1697 33 64.510645\n", "314 6 62.005591\n", "1786 35 67.453794\n", "1730 35 73.349892\n", "1224 23 56.454934" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rng = np.random.default_rng(seed=RANDOM_SEED)\n", "\n", "def generate_data(*, num_of_schools: int, data_samples_per_school: List[int], true_global_mean: int, true_global_variability: int, within_school_variability: int):\n", "\n", " # Generate true mean performance for each school around the global mean\n", " true_school_means = rng.normal(true_global_mean, true_global_variability, num_of_schools)\n", "\n", " # Generate synthetic academic performance data for each school\n", " data = []\n", " for school, num_samples in enumerate(data_samples_per_school):\n", "\n", " # Generate data samples for each school around their true mean\n", " school_data = rng.normal(true_school_means[school], within_school_variability, num_samples)\n", "\n", " # Append data with school index for each generated value\n", " for value in school_data:\n", " data.append({'School ID': school, 'score': value})\n", " \n", " data = pd.DataFrame(data)\n", " data.index.name = \"Student ID\"\n", " return true_school_means, data\n", "\n", "# Create data\n", "true_group_means, data = generate_data(\n", " num_of_schools=num_of_schools,\n", " data_samples_per_school=data_samples_per_school,\n", " true_global_mean=true_global_mean,\n", " true_global_variability=true_global_variability,\n", " within_school_variability=within_school_variability\n", ")\n", "\n", "# Shuffle data\n", "data = data.sample(frac=1)\n", "\n", "data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is how the distribution of students in each school looks like:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+cAAATHCAYAAAA/LHWGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAB7CAAAewgFu0HU+AADyDElEQVR4nOzdd5hU1f0H4O+wy9Kki6BgAaSIgoglGgsomhgLaiKKGJWIXayJv1hSjCUaY0XBghULGntLMCKgYgUFEVBQUUG6VKkL7Pz+4GHCbGN32dld4H2fh+eZc+ece87c2bkzzGfOuYlkMpkMAAAAAAAAACBjqlX2AAAAAAAAAABgSyecBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIZlV/YAAACALc8LL7wQV111Vap8wgknxM0331yJI6K8JJPJGD58ePz3v/+N8ePHx48//hhLly6NvLy8VJ3BgwfHz372s4z0v3bt2vjqq6/i66+/jsWLF8dPP/0U1apVi9q1a0eDBg2iefPmsfPOO0ejRo0y0v+Wxmt169GuXbu08uTJkytpJFQlhx12WMyYMSNVfuutt6JFixaVOKLSyc3NjS+//DK+/fbbWLJkSSxdujSys7Ojdu3a0ahRo9R7Qv369St7qAVs7se+qvjhhx+ie/fuqXLz5s1j+PDhlTgiAIDiCecBANgsXXnllfHiiy8W2H7BBRfEJZdcUur9DR06NK2dL/agoFmzZsXFF18c48ePr/C+P/jgg3jmmWdi5MiRsWLFio3Wb9asWXTs2DH233//OPjgg2PnnXeugFECFe2jjz6K008/vVz3mckfGLHp8vLyYvjw4fHMM8/EBx98EKtXr95om5122ik6duwYBxxwQBxyyCHRtGnTChgpAAAUJJwHAGCL8uijj8Zpp51m1iyUs+XLl8eZZ54ZU6dOrdB+58yZE3/+85/j7bffLlW72bNnx+zZs+PNN9+MiIiHH344DjzwwGLb3H333Wnliy66qHSDZbM3bNiw+OKLL1Llww8/PHbbbbdKHBGwoW+++SauvvrqGDduXKnaTZs2LaZNmxavv/56RES88cYbscsuu5T/AAEAYCOE8wAAbFGWL18e999/f9oyzcCme+SRR9KC+UQiEYccckh06dIl6tWrF4lEInVfeQUeU6dOjdNOOy1+/PHHQu9PJBJRu3btqF69eixZsiRtaf381q5du9H+7rnnnrSycH7rM2zYsLRVWZo3by6chyrik08+ibPOOiuWL19e6P3rL3FSrVq1+OmnnyKZTBa5r5K8JwAAQCYI5wEA2OIMGTIkzjzzTEuWQjl67rnn0srXX3999OzZM2P9LV68OPr06VMgmG/ZsmX07NkzDjzwwGjVqlXk5OREREQymYz58+fHxIkT47PPPothw4a5pjZspS699NJo0KBBmdubUV31TJs2Lc4555wCwfwee+wRv/nNb+JnP/tZ7LLLLpGVlRUR65a+nzt3bkyYMCHGjh0bw4YNi++++64SRg4AAOmE8wAAbHFWrVoVAwYMiOuuu66yhwJbhFmzZsXMmTNT5aZNm8aJJ56Y0T779+8fc+bMSdt2/vnnR79+/SI7u+B/ZROJRGy77bbRtWvX6Nq1a1x88cXx3XffxTPPPFPghwWwNdqafqxy7LHHRosWLSp7GJSjv//977F06dJUOSsrK6655pro3bt32sot61WrVi2aNWsWzZo1i8MPPzyuuOKK+OKLL+Kpp56KV155pSKHDgAAaapV9gAAAKA8NGnSJK38/PPPx7Rp0yppNLBlyX+d+Q4dOhQahpSXpUuXxr/+9a+0baeeempceumlhQbzRdlll13ij3/8Y4wcOTI6duxY3sMEoAJ8++23MWLEiLRtv//97+PUU08t1XvRbrvtFtdff32MHDkytt9++/IeJgAAlIhwHgCALcJhhx0Wbdu2TZXXrFkTd911VyWOCLYcS5YsSSvXq1cvo/2NGjUqcnNzU+WsrKy44IILyry/OnXqRMOGDctjaABUsOHDh6eV69evH6effnqZ99ewYcOoXbv2pg4LAADKRDgPAMAW49JLL00r//vf/44pU6ZUzmBgC7Jy5cq0crVqmf2v5Ndff51WbtmyZWy77bYZ7ROAqin/e0Lnzp2jevXqlTQaAADYNK45DwDAFqN79+6x5557xmeffRYREXl5eXHnnXfGwIEDK3lkFeebb76JCRMmxNy5c2Pt2rXRuHHj6NixY7Rv336jbZPJZEyYMCG+/PLLWLhwYVSvXj2aNGkS++67bzRt2rTcxzp79uwYN25czJw5M3Jzc2PbbbeNFi1axN57712uX7rn5ubGuHHjYtasWbFw4cLIzc2NRo0aRbNmzWLvvfeOWrVqlVtf6yWTyfjiiy9iypQpMW/evFizZk3Ur18/unfvnpFjud6aNWti/Pjx8cMPP8SCBQsiNzc3GjZsGNttt13stddeZZ7xnkwmy3mkxfvxxx/TynXr1q3Q/rcEkyZNiq+++irmzp0bEesu/dGhQ4e0FUbK27Jly2LcuHExd+7cWLBgQSSTyWjUqFG0aNEiOnfuHDk5OeXeZ15eXnz++ecxefLkWLBgQdSoUSMaNmwYHTt2jNatW5d7f2WxatWqmDJlSnzzzTexaNGiWL58eVSvXj1q164dTZs2jRYtWkTr1q03y7Dxyy+/jIkTJ8b8+fOjWrVq0ahRo2jfvn3stttuGb30RVUza9as+Prrr2PGjBnx008/RV5eXtSvXz/1t7jDDjuUe5+5ubkxfvz41HvbsmXLolatWtGkSZNo3bp17LrrrqW6DEhxKvt5rmrvCVvasV+2bFmMHTs25syZEwsWLIisrKxo1KhRNG/ePPbcc89yPXdn6nMKAMDmRDgPAMAW5bLLLos+ffqkym+99VaMHz8+OnXqVO59tWvXLq08efLkUrW/8sor48UXX0yVb7rppvj1r39dpvr//ve/Y+DAgfHVV18V2rZ9+/Zx5ZVXxgEHHFDgvtWrV8eTTz4ZDz/8cMyZM6fA/YlEIg466KC4+uqro1WrViV+fEUZM2ZM3HXXXfHxxx8Xen+DBg3iuOOOi4svvji22WabMvczevToeOihh+LDDz+MFStWFFonJycnDjzwwOjXr1/sscceJd73YYcdFjNmzEiV33rrrWjRokWsWLEiHnrooXj66adj3rx5Bdptt912GQnnv/vuuxgwYECMHDmywBL062VlZcVee+0VZ555ZnTv3r3Y/X300UfFLhn84osvpv0tbmj9sdgU+QOH9QFzJuR/HZf0vojCH2tFnxc2lJeXF0OGDIlHH300pk2bVmidXXbZJc4999wS77Mkhg0bFoMHD45PP/00Vq9eXWid2rVrx2GHHRYXXXRR7LLLLiXed1HHMzc3Nx599NEYPHhwoa+1iHWP9ZJLLomjjjqq2D7yH/MNXXXVVXHVVVcV2bZfv35x0UUXFXrf5MmTY9CgQfHWW2/F8uXLix1DzZo1o2PHjnH44YfHCSecEPXr1y+2flmU9m+zqPNcXl5ePPvsszFo0KCYPn16oW2bNm0a5513Xpx00knlFlJWJStWrIgRI0bE8OHD46OPPtroOap58+bRq1evOOWUUzY5WB41alQ89thjMXr06CLf2yIittlmmzjggAPi+OOPj27dupX6eahKz3NFvicUZ0s79h988EE88MADMXr06GLP3QcffHBceOGFG31PLE55f04BANicbXn/QwIAYKt2wAEHxP777x8ffvhhatsdd9wRjzzySCWOKnNyc3Pj6quvjldffbXYel9++WWceeaZcfXVV8dpp52W2j5nzpy44IILYsKECUW2TSaT8e6778ZvfvObGDRoUOyzzz5lHu8999wT99xzT7EzsRctWhSPPfZYDB06NO66667Ya6+9StXHggUL4qqrroqRI0dutG5ubm6MGDEiRo4cGb17945rrrkmsrKyStXfelOnTo3zzz8/vvvuuzK1L4tkMhl33HFHPPTQQ7FmzZpi665duzbGjBkTY8aMif322y/uvPPOaNy4cQWNtHTyj2vGjBnx+eefR8eOHStpRFXf/Pnz48ILL4yxY8cWW++7776Lq666Kt588824/fbbN6nPadOmxRVXXBHjxo3baN3ly5fHa6+9FkOHDo1+/frF+eefX+Z+Z8yYERdccEF8+eWXxdb77rvv4rLLLov3338/rrvuuoxfjmFDAwYMiAEDBsTatWtLVH/lypUxevToGD16dLRo0SIOP/zwDI+wbBYtWhSXXHJJ2ntsYebMmRN/+9vf4u2334677roratasWUEjzLyFCxfGoYceWmw4m9+MGTPitttui8ceeyz69+8fe++9d6n7nT59elxxxRUbfY2vt3Tp0njzzTfjzTffjJtvvjlOOOGEEvdV1Z7n/O8J62d5Z3Ilmg1tacf+p59+iiuuuCJGjBix0brLly+PN954I95888045ZRT4uqrry7VjwG21M8pAACbwjXnAQDY4lx++eVp5ffff3+jX3JujpLJZPzf//1fgWC+Vq1aUadOnQL18/Ly4sYbb4y33347ItYFDKeddlqBYL5u3bqFfsm7fPnyOO+88wqdXV8SDz30UNx9991pwXxWVlbUq1ev0KVZ58yZE2eddVbqMgUlMXXq1DjppJOKDOZr1apVaH/JZDKefPLJuPDCCzf65XFh5syZE3369CkQzNeqVStq165d6v2VxJo1a+L3v/993H///YWOOScnp8iVBz7++OM4+eSTi5xdXdkKW+niyiuvLPPf3pZuwYIF0adPnyKDo7p16xZYMn348OFx2WWXlfmSBZ9++mmcdNJJRQbztWvXLvTvb82aNXHnnXfGX/7ylzL1O2fOnDjttNMKBPN16tQp8rX27LPPxj333FOm/sri/vvvj/79+xcazGdnZ0f9+vWjfv36Zf4hUGVZtmxZ/O53vyvwflqrVq0izzUjR46Mv/71rxUxvAqzZs2aIoP56tWrR4MGDYr8W/zxxx/jjDPOiI8++qhUfX744Ydx4oknFvkaz8rKigYNGhS5/HhpXudV8XnO/56wevXq+MMf/lDkDOzytKUd+7lz50bv3r2LDOZr165d6GfAvLy8ePLJJ+OCCy6IlStXlqivLflzCgDApjBzHgCALc6ee+4Zhx56aNoXj3feeWc8/fTTlTiq8vf000/H+PHjI2Ld8s3nnXdedO3aNRo1ahQR60KAl156KQYMGJBaUjmZTMZ1110XQ4cOjT/84Q/x/fffR0TEQQcdFKeffnrst99+qWuwT506NR577LG04/bTTz/FLbfcErfddlupxjplypTUjwiqVasWJ598cvTs2TPat28fWVlZkZubG6NHj47HHnss9eOBiHWzzy688ML497//vdHrkC5atCj69u0bM2fOTG3LysqKI488Mo4//vjo0qVL6kvgVatWxaeffhpPPPFEDBs2LFV/xIgRceedd8Yf/vCHUj2+v/zlL6ngePfdd4++ffvGgQceGA0aNIiIdcft7bff3uTl3jfUv3//eP3119O21a9fP84555w48sgjU30tXbo03nnnnXjwwQdj4sSJqbrTp0+PCy+8MJ5//vkCocIuu+wS1157bao8bty4eOmll1Llzp07x/HHH1/ouNY/5k2x3377RcOGDWPhwoWpbV9//XUcffTRccopp0SPHj2iTZs2m9xPRKQ9zg1vF1bOrzwea3n44x//GFOmTEnbtvvuu8c555wTBx98cNSpUyeSyWRMnz49Xn311XjwwQdj+fLlMWLEiFiwYEGp+5s2bVqcffbZsXTp0tS2GjVqxPHHHx/HHHNMdOzYMXUeWbZsWXz00UfxyCOPpF3K4plnnonddtstTjnllFL1fckll6SWWj/ooIPit7/9bey7776p1/a8efPi9ddfj3vuuSd++umnVLsHHnggjj322GjZsmWBfR5//PGx5557RkTESy+9lPaDg+OPPz46d+5c5HjyXw5jxowZcffdd6dt23nnnaNPnz5x0EEHRfPmzdNC+Tlz5sSUKVPio48+ihEjRsTXX39dsgNRCf7617/GpEmTImJdWPq73/0ufv7zn6deB4sXL44333wz7rzzzrRLDbz00ktx/PHHF3pZlc1Z9erVY7/99otDDjkk9thjj2jbtm3a+9Ty5ctj0qRJ8Z///CeeffbZWLVqVUSsC5Z///vfx6uvvhoNGzbcaD9fffVVnH/++QUujdChQ4fo3bt3/PznP48ddtgh9aOzRYsWxaRJk+K9996LoUOHxg8//FCqx1UVn+fDDjssbrzxxrSl1z/++OM46qij4re//W0cffTRseOOO5Z7v1vasV+7dm1ceumlBd4vWrduHeeee25069YtdUmNOXPmxJtvvhn33ntv/Pjjj6m6b7/9dtx4441x/fXXb/TxZPJzCgDA5iyRLOvP5AEAoBLlv0bwySefHNddd12qPHny5DjuuOPSZizde++9cdhhhxW6v6FDh8Yll1ySKjdv3jyGDx9e7Bgq+5rz6x1zzDFx8803F5gZu97HH38cffr0SZvFecQRR8Sbb74Z1apViz/96U9x6qmnFtnvvffeG3feeWeqXL169XjnnXdSPwIozAsvvFDodZpr1aoV9913X+y///5Ftn300UfjpptuStt24oknxo033lhkm4iI8847L+0HGc2aNYu77rqr2GAtIuLll1+Oq6++OjWrK5FIxL/+9a9CZ2+vl/9azOudeeaZccUVV2R8+exPP/00Tj311MjLy0tta9euXTz88MOx7bbbFtpm7dq1ceONN8aTTz6Ztv13v/tdXHnllcX2l//5POGEE+Lmm2/ehEewcQ8//HD84x//KPL+7bffPvbcc8/Yc889o1OnTrH77runAuGy2tTXdHnso7TnhZdeein++Mc/pm3r1atX/OUvfylyZvb06dPjjDPOKPRveGPPbW5ubvTq1SstQGnTpk3cdddd0bp16yLbRawLyDf8YU+NGjXijTfeiO23377INoVd4zg7Ozv+9re/xYknnlhkuy+//DJ69+4dy5YtS23r06dPsdePjyj98c8v/2Ps3LlzPPLIIyVeQWPMmDHRsGHDjR7LstjUa86vd9FFF0W/fv2KbDdr1qzo1atXzJ49O7XtiCOOyNjqBR999FGcfvrpadveeuutcv0x1IYWL14cjz/+eJxyyiklXnL7u+++i7PPPjttFvDGjmPEumvbH3/88WmrsmRlZcU111wTvXv3LnTVmQ0lk8l46623okGDBkVekmZzeZ6vv/76eOKJJ4q8f+edd057T2jfvv0mBbpb4rHPf36KiDjuuOPihhtuKPJYLV68OM4999wCKwcU95k6omI/p/zwww9p16gvyWd4AIDKZFl7AAC2SO3atYujjz46bdtdd91V5iWcq6q99torbrnlliKD+Yh1s5CPO+64tG1vvvlmREScc845xQbz6+vsvPPOqfLq1avjrbfeKtN4//73vxcbzEesC9D69OmTtu3FF19M+xI6vw8++CAtmK9bt2488sgjGw3mI9Z9Mb3hTPlkMhkPPvjgRtvld9RRR8Uf//jHCrmu9b333pv2hXfjxo3jkUceKfIL74h1ocKf//znOOKII9K2P/XUU2WaPZ1pv/vd7wqMdUOzZs2KoUOHxj/+8Y849dRTY5999omTTjopbr311tSKEluD++67L6180EEHxbXXXlvskuk77rhjPPjgg1GjRo1S9/fyyy+nBfPNmzePRx99tERh8jnnnBOnnXZaqrxq1aoYPHhwqcdwxRVXFBvMR0S0b98+LrzwwrRtQ4cOLXVfpbV+1ut6/fr1K9WlLfbZZ5+MBPPl5bTTTttooLz99tsX+BHEyJEjUzPHK0L37t2jXbt2Zfq3sR+C1a9fP/r161eqa2Hvsssucf/996cFoEOGDEk7jxfmmWeeKXC5lJtvvjlOPfXUjYbDEet+bHb44YcXGQ4XpSo+z//3f/9X7Hv6999/H6+88kpcf/310bNnz9hnn33itNNOi7vvvju++uqrUve3pR37lStXxkMPPZS2bf/994+bbrqp2B8x1K9fPwYNGhTNmzdP2z5w4MBix7g1fE4BACgr4TwAAFusiy66KLKz/3clpy+//DL+/e9/V+KIyt+f//znEl23uEePHgW2bbvttgXCq8JkZWUV+KFD/uvUl8T+++8fRx11VInqXnzxxWlf4K5duzb+9a9/FVk/f5jer1+/aNWqVYnHdtppp8VOO+2UKr/55pul+iK4evXqcc0115S4/qb4/vvv4913303b9oc//KFEQVEikYg///nPaTPMV61aFc8++2y5j3NTJRKJuOuuu6Jv374l+sHDmjVr4rPPPotBgwZFz54946ijjopXX311i/tBzoY+/PDD+Pbbb1Pl7Ozs+Mtf/lKi4KhVq1Zx5plnlqq/ZDIZDz/8cNq2q6++utiwJb+LL7446tatmyo/99xzhV6bvSi77rprnHHGGSWq+5vf/CbtPWD27NlpyzNnQv5rYGdq9nZlaNCgQfz+978vUd0jjjgi7Zy0evXq+PLLLzM1tM1Cq1at0mb3/vjjj8VexmD16tUFXm/HHHNMoe/n5amqPs81atSIRx99tMhLquS3atWq+Pjjj+Oee+6JY445Jnr27BnvvPNOidpuicf+1VdfjUWLFqXK61cgKclnyLp168bVV1+dtu3zzz8vMJt+va3lcwoAQFkJ5wEA2GLtsssuccIJJ6Rt69+/f2r58s3d7rvvHrvvvnuJ6nbs2LHAth49epR4ydf87adOnVqidhsqzbWl69SpU2C2/8iRIwutu2DBgnjvvfdS5Zo1a0bPnj1LNbbs7Oz45S9/mSrn5eXFJ598UuL2hx12WKkCyk3xzjvvpAXODRo0iGOOOabE7Zs2bRpHHnlk2ra333673MZXnrKysuL//u//4rXXXotjjjmmVEsUf/PNN/GHP/whfvvb32Y8kK0s+ZftPfDAA9NWudiYU045pVQrPUycODHttb/DDjukhY0lUa9evTj44INT5SVLlpRq6f+TTjqpRD8+iFj32sj/I52ynLtKY8MfHkSU7YdMVdVxxx1X4ktHZGVlFbg0SKaP/eYg/8zvzz77rMi6n332WcyZMydt2/nnn5+JYaWpys9zrVq14h//+Ec888wz0a1btxIFy+uNHz8+zj777LjooovSLndRmC3x2Of/YcLBBx8cu+yyS4nH1r179wI/Nirqs8PW9DkFAKAssjdeBQAANl/9+vWLl19+OXJzcyNi3XVfX3zxxVKHt1VRaZZK3WabbaJevXppszpL036HHXZIK+efHbox2dnZ0a1bt1K16d69e9oSrJMnT46VK1dGzZo10+qNGTMm7UvgLl26RJ06dUrVV0REhw4d0spjx44tdln1Df3sZz8rdX9llX+mWrdu3Up9Xd1f/vKXadfVnjBhQuTm5m7S9XkzqXXr1nHbbbfFkiVL4q233ooPPvggxowZU+i1evMbM2ZM9OzZM55++ulo2rRpBYy24uRfvr+0QXnTpk2jY8eOxQaEGxo9enRa+cADDyxxUL6hDh06pK1iMnbs2AKvv6Lst99+peprxx13jClTpqTKpT13lVanTp3Sls+/6aabYrvttqvQc0SmlOXYbyjTx35Dl156aTRo0KBMbdu1a1emdnPnzo1vvvkmlixZEsuWLYvc3NwCK3d88cUXaeVZs2YVub+PPvoorbz77rvHrrvuWqaxlcbm8Dx37tw57r///vjxxx/jv//9b3z00UfxySefxLx58zba9r///W9MmzYtnnzyydhmm20KrbMlHvv8nx1K+vlmvUQiEb/4xS/SVhQoaub81vg5BQCgNITzAABs0Zo1axannHJKPPbYY6ltAwYMiOOOO26z/4Ivf2C+MbVr10774jb/9UM31nZDG5t1ll+rVq0KhOobs9tuu0W1atVS1yxds2ZNfP3117HHHnuk1csfLObm5saQIUNK1VfEupnWGyrJl/zrtW3bttT9lVX+Wcb5j0dJ5G+zatWq+P7776NNmzabNLZMq1evXpxwwgmpFTHmz58fEyZMiM8//zxGjx4dn3zySaxevbpAu5kzZ8bFF18cQ4YMKdVM8aou/xLGJQ2487cpaTifv97ChQvL9FrL/zdcmtdaac5bEVHghzpLly4tVfvSOu644+Luu++OFStWRMS6v9HTTz89OnXqFEceeWQceOCB0bZt283y77CqH/sNHXvssRVySYGPP/44XnrppRg+fHgsXLiw1O2LC1MnTZqUVt5rr71Kvf+y2Jye52233TZ69+4dvXv3joh1P3aYOHFijB8/Pj7++OP47LPP0q57vt6XX34Zf/rTn+LOO+8sdL9b2rFfsGBBgfNseXx2KGrVk635cwoAQEkI5wEA2OKdd9558eyzz8by5csjYt2Xt0OGDCnxdYurqvzLJ29M/uVfSzO7PH+QVNiX3cUp7Q8JItb9IKBBgwZp137f8Hqp6+VfsnzMmDExZsyYUveX3+LFi0tct379+pvcX0nlH1dpv8yPiGjSpEnUqFEjVq1aVeR+NweNGzeOrl27RteuXSNiXVj83HPPxYMPPljgb2XcuHExdOjQOOqooyphpOUvNzc3FQCvV5a/hdK0yf9aGzZsWAwbNqzUfeZXmr+9TT3vlfbcVVrbbrttXHfddfHHP/4xra/x48enVjqoV69edOrUKfbZZ5/42c9+Fp07d94swvqiZhkXpaKPfUWaM2dO/OUvfynycislVdwP3TZ874soOEs6Uzbn53n77beP7bffPg4//PCIiJg9e3Y89dRTMXjw4ALny//85z/xu9/9Lvbcc88C+9nSjn1hn53K8n6R/wcvS5YsiWQyWWAFFZ9TAACKV/X/9wcAAJuoUaNGcfrpp6dtu//++1Nh/eaqLMtJl2f70ijtF87r5Q/iCptlmKkva/N/kV+c/CsLZFL+x1tex7awL+83Nw0bNoyzzz47XnnllWjfvn2B+8syy7uqKuzvvix/C6UJuzP1Wlu5cmWJ61bkeausevToEQ888EDstNNOhd6/ZMmSGDVqVNx5551xyimnRNeuXePWW2+N+fPnV/BIS2dzOPYVYebMmdG7d+9NDuYjosCy9xvKf06uV6/eJvdXElvS89ysWbO4/PLL4/nnn4/tt9++wP1PP/10oe22tGOf/7NTtWrVynT5n/zvMWvXri10tr7PKQAAxRPOAwCwVTjrrLPSZjfPnz8/Bg8eXIkjoiSKCy7WK2wZ861JeX2ZvyUFMk2bNo2BAwdGjRo10raPGzeuVEHw1qAkr7H1cnNzK30Mm4uDDz44/v3vf8edd94ZRxxxRLHh3ty5c2PQoEFx+OGHxwsvvFCBo6Qsrrrqqvjhhx/StrVs2TIuuOCCuP/+++O1116Ljz76KD777LP44osvYvLkyal/N910U5n73ZLO0RWtdevWcddddxXY/uGHH5aovWNftJIcG59TAADSWdYeAICtQt26deOss86K2267LbXtoYceit69e1fYjKj8tqQlfjemrNegzd+usOcq/5Lyl1xySVxwwQVl6m9zUL9+/bRrx/70009l2k/+dhW5NH9FaN68eRxxxBHx2muvpbbl5ubGrFmzomXLlpU4suKV9LxQ2PO1dOnSaNSoUan6K81rs0GDBmnlW265JY477rhS9bc1qV69evzqV7+KX/3qV5GXlxeTJ0+OTz75JD755JMYPXp0gWtAL1++PK666qrIy8uLE088sZJGTXE++OCDAoHuVVddFX369ClR+9Ks2JP/9WZJ702z5557xl577RVjx45NbZs5c2bk5uZGTk5OWt0t7djn/+yUl5cXy5YtK/WM9vzvF1lZWYXOwPc5BQCgeGbOAwCw1TjttNOiSZMmqfKSJUviwQcfLPP+8s/gWbt2banaF7ZE+5Zq5syZpW6zfPnyAkuY5v/CPCIKhJHTp08vdV+bk/zHYMaMGaXex7x589Ku4xqxZX7p3bFjxwLbMr0sbkWdF3JycqJWrVpp28ryt1CaNg0bNkwrb+mvtfJUrVq12G233eK3v/1t3HHHHfHuu+/G888/H6ecckpUr149re5NN91k+eYq6s0330wrn3DCCSUO5iMiFi5cWOK6+d/bpk2bVuK2FG6PPfYosK2w19qWduwL++xUlveL/CtG1KtXr9DZ7D6nAAAUTzgPAMBWo1atWnHuueembXv88cfjxx9/LNP+8s8WKu017MsSWG+upk6dWurlxL/44ou0WcTZ2dmx6667FqiX/9riY8aMKdsgNxNt27ZNK0+YMKHU+8jfpkaNGrHLLrtsyrCqpJo1axbYlj/QLm8VeV5o165dWnnSpEml6qu0bXbbbbe08pb+WsukRCIRe+yxR1x77bUxePDgtIB+6dKlMWLEiEocHUWZPHlyWrlHjx6lav/555+XuO7uu++eVt5wxjdlU9j5v3bt2gW2bWnHvlGjRmk/To0on88O+d+D1vM5BQCgeMJ5AAC2KieffHI0b948VV6+fHncd999ZdpX/mVC888oKs6iRYviq6++KlO/m6M1a9bEyJEjS9XmrbfeSiu3bdu20LD1wAMPTCtPmzYtJk6cWOoxbi722muvtPLIkSNLfS3w//73v2nlPfbYo8Ds3S3B7NmzC2xr3LhxkfWzsrLSyqWd9R5RseeFPffcM62c/zWzMXPmzClVWJj/tTZmzJgy/7ipqiqPv4HS6tKlSxxxxBFp2/KHwFQN8+fPTytvv/32JW67dOnSGD16dInr77fffmnlSZMmxddff13i9hSU/z0hJyen0KXdt8Rjn/+zQ/5VIDYmmUwWaJN/n0Vt9zkFACCdcB4AgK1KTk5OgeuRP/PMMzFr1qxS76tVq1Zp5U8//bTEbf/1r39tVdecj4h4+umnS1x32bJl8corr6Rt69atW6F1t99+++jUqVPatv79+5d6fJuLQw45JG0Z2UWLFsXrr79e4vZz586NoUOHpm0r6thu7t5+++208nbbbRfbbrttkfXzz3ovzfXY16vI88Khhx6aVn7vvffi+++/L3H7IUOGlKq/PffcM5o2bZoqr169OgYOHFji9puD/H8Dy5Ytq5B+W7RokVYu7YoLVIz84WBprqX91FNPlep57dy5c4Hw/9577y1xe9KtXr063nvvvbRt+WfIr7clHvuuXbumld99991SLdc/YsSIApcyKeqzg88pAADFE84DALDVOeGEE6Jly5apcm5ubjz00EOl3k/+61k///zzkUwmN9pu+vTp8cADD5S6v83dBx98EP/+979LVLd///4xb968VDkrKytOOumkIutfeOGFaeWRI0fGY489VraBRpToeawsO++8cxxyyCFp22699dZYsGBBidrfcMMNaQFRzZo1o2fPnuU6xk312GOPxYABA8oUjq/3wgsvFFiy/dBDDy30+rjr5Z9V/80335S634o8L+y///5py/yuWbMmrrvuuhL19+2338bDDz9cqv6qV69e4NIgQ4YMKfUMzA1Vtdda/h9vlPZvYM2aNWXqd+rUqWnl/EtQUzU0a9YsrVzSFWG++uqrGDBgQKn6ys7OjjPPPDNt22uvvVbgh2tbg9tvvz0ef/zxUs++3tB9991XYOWD/D9wWm9LPPbHHHNM2rXg16xZE9dee22JfqC1dOnSuPHGG9O2dezYMTp37lxo/a3hcwoAwKYQzgMAsNXJysqKiy++OG3bhkFwSR155JFp5YkTJ8agQYOKbTNt2rQ466yzSjXbbkty9dVXx0cffVRsncceeyweffTRtG3HHXdcscsHd+vWLQ466KC0bTfffHPccccdpQrLFi5cGPfff3+cddZZJW5TGc4777yoVu1//5378ccfo2/fvsV+8b127dq44YYb4o033kjb3rt372jYsGHGxloWS5Ysif79+0f37t3j9ttvj2+//bbEbZPJZDz77LPxl7/8JW17dnZ2nH766cW27dChQ1r56aefLnV4XJHnhUQiEeedd17atlGjRsXf/va3Ypdjnz59evTt2zdWrVpVqv4iInr27Jl2PeG8vLy4/PLL44knnijVsZo9e3bcdttt8cc//rHUY8ik3XbbLa385ptvlmrp/mOPPTYGDhxYIAQszttvv13gGvM/+9nPStyeipN/ufNHHnlko5dRmTBhQvzud7+LlStXlrq/k046Ke3HhBERV155ZTz55JMler0lk8kYNmxYjBkzptR9VyVz586NG264IY444oi4//77C71kSVHWrFkTAwcOjHvuuSdte7169YoNfLe0Y1+zZs3o27dv2rb33nsvrrnmmli9enWR7ZYsWRLnnHNOgUu05P9RZH5b+ucUAIBNkV3ZAwAAgMrwq1/9Kh544IH44osvyryP9u3bx9577x2ffPJJatttt90WU6dOjTPOOCPat28fiUQi8vLyYvLkyfH666/Hk08+GcuXL4+cnJxo06bNFn1t9A3tvvvuMXny5FixYkX06dMnevXqFT179oz27dtHtWrVIjc3N8aMGROPPfZYgZmITZo0iSuvvHKjfdx2221x0kknpZb1zsvLi/vuuy9effXV6NWrV/z85z+Pdu3apS1LvGjRopgyZUpMmjQpRo4cGaNHj441a9ZEmzZtyvXxl7cuXbrE2WefHffff39q26RJk+JXv/pVnHvuuXHkkUfGDjvsEBHrluV+9913Y9CgQTFhwoS0/bRt2zYuu+yyCh17aSxatCjuv//+uP/++6Nz587x85//PLp06RIdOnSIBg0apK4PvmbNmvj222/j448/jueff77Q19WZZ54Zu+66a7H9HXrooWlL77788svx1VdfxUEHHRRNmjQpsKT1scceW+B6xRV9XjjhhBPitddei1GjRqW2DRkyJMaPHx/nnntuHHzwwVG7du2IWBfKv/rqqzFo0KDUrMTOnTvHuHHjStxfTk5ODBw4MHr27BkLFy6MiHWrj1x//fUxZMiQOOWUU+JnP/tZtGrVKvX8JJPJmD9/fkyZMiU+//zzGDFiRIwbNy6SyWSVW6p43333jbp166Z+KLFw4cI4+uij44gjjoiWLVtGrVq10lZf2GOPPdJWS5g3b17cddddcc8998Q+++wThx12WOyxxx7Rtm3bqFevXqre8uXLY+LEifHyyy/HCy+8kPZjig4dOsS+++5bAY92y/Xqq6+mzRIurZYtW8b+++9fYPvxxx8fAwYMiBUrVkTEuufx1FNPjbPPPjt69OgRO+64Y0SsOyeNHz8+XnrppXj++edTPxLbb7/94uOPPy7xOGrWrBl33313nHTSSanX7Nq1a+O6666L559/Pnr37h0HHnhgNGvWLPV3uWjRovjiiy/ivffei6FDh8b06dPjpptuin322afMx6OqmD17dtx+++1x5513xn777Rf7779/dOnSJdq2bRv169dPhcG5ubnx9ddfx/vvvx/PPfdcoT/w+v3vfx+NGjUqsq8t8dj37ds3Ro4cmfb+9MILL8SECRPi7LPPjm7duqXOU3Pnzo0333wz7r333gI/YD355JOLXHVgva3lcwoAQFkI5wEA2ColEom49NJLCyzRXFrXX399HH/88WlLrb744ovx4osvRvXq1aNOnTrx008/pQUviUQirrvuuvjoo4+2mnC+bdu2ccwxx8Q//vGPyMvLi6eeeiqeeuqpyM7Ojjp16sSSJUsKnYlWp06d6N+/f9SvX3+jfTRo0CAeeuihuOCCC2LKlCmp7TNmzIjbbrstbrvtttQ+s7OzY+nSpcXOLq7qLr744pg+fXrapQIWLVoU//jHP+If//hH5OTkRI0aNYqcjb3jjjvGgAEDIicnp6KGvEnGjRuXFiInEomoV69erF27NpYvX17s0rw9e/aMyy+/fKN9/PKXv4wBAwakBTmTJk0qsDz+egcffHCBcD6i4s8Lt9xyS5x22mlpS7BPnDgxtUJI3bp1Y9WqVQWWhD7ssMPi8MMPL1U4H7Hub+ehhx6Kfv36xcyZM1Pbv/7667j++utTj6du3boRsW5J5NJc274y1axZM/r06RN33313atuiRYvi2WefLbR+v379ClzKIGJdiPfRRx+lrRRSvXr12GabbWL16tVFXrKhfv36ccsttxR7+QU27s4779yk9ieccEKh4XyTJk3ioosuiltuuSW1bcWKFdG/f//o379/1KpVK2rUqBGLFy8u8J52wgknlDqcj4ho06ZNDBw4MC655JJYvHhxavvEiRPjmmuuiYh1K4Nss802sWLFijKtiLG5ycvLiw8//DA+/PDD1LZq1apFvXr1Ijc3N1asWFHs7PaLL744evXqtdF+trRjn5WVFXfeeWf07ds37XPSlClT4oorroiIdZ+R1q5dW+RKD4ccckhcffXVJepva/ucAgBQUpa1BwBgq9WtW7fo0qXLJu2jdevWMXDgwKhVq1aB+1avXh2LFi1KC+BycnLipptuihNOOGGT+t0cnXnmmXHJJZekhU5r1qwpNMSIWBeCDBo0qFTP0Y477hj/+te/4sQTT0zN2s1v2bJlsXjx4iKD+UQiEe3atStxn5UlOzs7br/99jj33HMjO7vg765zc3OL/MJ7v/32i2eeeSZ22mmnTA+zTDp06FBgOeH8kslkLF68uNjgt0GDBnHDDTfE9ddfX6Kwc/2s8E1dOaGizwuNGzeOwYMHR6dOnQq9/6effioQzK+/ZEBZQ+Ddd989nn/++Tj88MMLvT+ZTMaSJUtiyZIlRT4/2dnZVXKVivPPPz9OPvnkMrUt7niuXr06Fi5cWGQw37Zt2xgyZEiVPCb8T9++fQtcj3y9FStWxKJFiwq8p5188slxww03lLnPAw44IJ555pnYY489Cr1/zZo1sWjRoiLD4Q2XF98c7b333qlZ1kXJy8uLRYsWxfLly4sM5nfYYYcYMGDARpdk39CWduy32267eOqpp4qc+b5s2bJCg/lq1apF79694957742aNWuWqK8t+XMKAMCmMHMeAICt2mWXXRannXbaJu3j4IMPjhdffDHuuOOOGDZsWKGhb1ZWVhx66KFx+eWXR+vWrTepv83ZBRdcEPvtt1/cddddRc4erF+/fvTo0SMuueSS1Mzb0qhVq1bceOONce6558ZDDz0UI0aMiDlz5hTbJicnJzp37hwHH3xwHHXUUdGiRYtS91sZEolEXH755XHCCSfEwIEDY8SIEUV+0Z2VlRWdO3eOM888s8hAtaro3r17dO/ePaZOnRrvvPNOfPLJJ/Hpp5+W6Nrf2dnZ0alTp+jRo0ccffTRaUuJl0SrVq3ihRdeiOHDh8fw4cPjyy+/jDlz5sSyZcuKvS5vfhV9Xth2223jmWeeiSeffDIeffTRAtcHXm+XXXaJc889N379619vUn8REY0aNYoBAwbEF198EQ8//HC8++67qaXui1K7du3YZ599Uq+1bbfddpPHUd6ysrLiuuuui969e8crr7wSn3/+eXz77bexdOnSWLlyZbEzcv/zn//EyJEj4913341PP/005s6dW2xfiUQi9tprr/j1r38dv/71r4v8URFVyx//+MfYf//9o3///gWW4d7Q3nvvHRdccEEcdNBBm9xny5Yt4/nnn48333wzBg8eHGPHji32nFS/fv048MAD44QTToiDDz54k/uvTD179oyePXvGpEmTYtSoUTFmzJgYN25c2mz2ouTk5MR+++0Xxx57bBx55JElDpY3tKUd+7p168Z9990XH3zwQdx///0xZsyYIh9P7dq14+CDD44LLrgg2rdvX+q+ttTPKQAAmyKRLO5/lQAAQKksWbIkRo8eHbNnz44lS5ZEzZo1Y8cdd4y99947GjZsWNnDq1Jmz54dY8eOjZkzZ8bq1aujcePG0aJFi9hnn30KXNt7U3333XcxefLkWLRoUSxatCgSiUTUqVMnGjduHC1btoyWLVtuEcumrr/O8fTp02PBggWxevXqaNiwYWy33Xax1157lTqormrmzZsX3333Xfzwww+xZMmSWL58eWRlZcU222wT9erVi5YtW0abNm2q3HNZGeeFCRMmxNdff50Kh7fbbrvo0KFDtG3bNiP9RaybLT9lypSYOnVqLFy4MJYsWRJZWVlRp06d2G677aJly5ax8847FzqDcks1e/bs+Pbbb+OHH36In376KVasWBE1a9aMunXrxk477RTt27ffpGujU/mmT58e48aNix9//DFWrFgRtWvXjhYtWsSee+4ZTZo0yVi/y5cvj3HjxsWcOXNS5/vatWtHkyZNonXr1tG6dest+sceyWQy5syZE99++23MnDkzfvrpp1i+fHnk5OSk3hN23XXXaNWqVbmfc7a0Y79s2bL49NNPU48nKysrGjduHDvssEN07ty5XN9Tt/TPKQAAJSGcBwAAAAAAAIAMq1oXPgIAAAAAAACALZBwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOyK3sAbD0WLlxY2UPYqiUSiWjQoEFERCxatCiSyWTlDghgM+IcClB2zqEAm8Z5FKDsnEMBNo3zaETDhg3LdX9mzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZll3ZA6B406ZNi0mTJsXs2bMjLy8vmjZtGm3atIm2bduWWx/jx4+P7777LubMmRO1atWKpk2bRqdOnaJp06bl1gcAAAAAAADA1kw4XwbLli2LSZMmxfjx42P8+PHx+eefx4wZM1L3N2/ePIYPH75Jfbz99ttx7733xtixYwu9v127dnHWWWdFjx49yrT/vLy8ePzxx+Pxxx+P6dOnF7i/WrVqccABB8Sll14anTp1KlMfAAAAAAAAAKwjnC+FRx55JF544YX4+uuvIy8vLyN9JJPJ+Pvf/x6DBw8utt7kyZPjiiuuiJEjR8bNN98cOTk5Je5j4cKFcemll8aHH35YZJ28vLx477334uOPP47LL788zjzzzBLvHwAAAAAAAIB0wvlSGD16dEyZMiWjfdx2220FgvkuXbpEx44dIysrKyZPnhzvv/9+JJPJiIh4/fXXIysrK/75z3+WaP+rV6+Oiy66KEaPHp3alp2dHV27do3WrVvHsmXLYsyYMTF58uRU/X/84x9Rt27d6NmzZzk9SgAAAAAAAICti3B+E9WuXTt23333mDhxYixfvnyT9jVixIgYNGhQqlyvXr3o379/HHDAAWn1Jk2aFOeff37Mnj07IiJeeeWV2HvvvaNXr14b7eP2229PC+bbtm0b9957b7Ro0SKt3iuvvBJXX311rF69OiIi/va3v0WnTp2iXbt2ZX58AAAAAAAAAFurapU9gM1JjRo1olOnTnHqqafGTTfdFK+99lp88skn8cQTT0TDhg03ad/JZDJuv/32VDmRSMTAgQMLBPMRER06dIhHH300atSokdp2zz33xMqVK4vtY/bs2fHEE0+kyo0bN47BgwcXCOYjInr06BE33HBDqrx69eq46667SvWYAAAAAAAAAFjHzPlSuOOOOzK272HDhqUtmX/cccfFvvvuW2T9li1bRt++fWPgwIERETFv3rx49tln47TTTiuyzYMPPhi5ubmp8u9///tif1Rw/PHHx3PPPZeaaf/WW2/Fl19+Ge3bty/x4wIAAAAAAADAzPkqY+jQoWnlU089daNtevXqFVlZWUXuY0PJZDL++9//psr169ePY445ZqN9nHLKKWnlN954Y6NtAAAAAAAAAEgnnK8C1qxZE++8806qvP3220enTp022q5p06bRuXPnVHns2LGxYMGCQutOmDAh5syZkyp369YtbVn8onTv3j2qV6+eKr/11lsbbQMAAAAAAABAOuF8FTBlypRYsmRJqrzXXnuVuO2GddeuXRuffvppofU++eSTItsVp2bNmrHbbrulypMnT04bKwAAAAAAAAAbJ5yvAr755pu08oZh+MZ06NAhrTx16tQS9ZG/XXHyj6eoPgAAAAAAAAAonHC+Csgfdu+www4lbrv99tsXu6+itudvV5z84xHOAwAAAAAAAJSOcL4K2PBa8BERzZo1K3Hb/HVnz5690T6ys7OjSZMm5d4HAAAAAAAAAIUTzlcBy5cvTyvXqVOnxG3z182/r8K216pVKxKJRLn3AQAAAAAAAEDhsit7ABQMu3NyckrctkaNGsXuq7Dt+dtsTP7xlDWcL80PAih/Gx5/zwVA6TiHApSdcyjApnEeBSg751CATeM8Wv6E81XAqlWr0sqlCefz1125cuVG+6hevXopRlfyPjamQYMGZWpH+atfv35lDwFgs+UcClB2zqEAm8Z5FKDsnEMBNo3zaPmwrH0VkH8me25ubonb5q9bs2bNjfaxevXqUoyu5H0AAAAAAAAAUDgz56uA2rVrp5VLE87nn3Wff18bbl+xYkWhbTYm/3iK6mNjFi1aVKZ2lI9EIpH6VdPixYsjmUxW8ogANh/OoQBl5xwKsGmcRwHKzjkUYNM4j5b/yuDC+Sogf9i9bNmyErfNX7e4cH7+/PkREbFixYrIy8uLatVKtnBCSfvYmK3xBVtVJZNJzwdAGTmHApSdcyjApnEeBSg751CATeM8Wj4sa18FNG3aNK08e/bsEredNWtWWrlZs2Yb7WPNmjXx448/lnsfAAAAAAAAABROOF8FtG7dOq08c+bMErfNH+S3atWq3PvIH87n3xcAAAAAAAAAxRPOVwH5w+5JkyaVuO3EiRPTykWF8/m3l6aP/HWL6gMAAAAAAACAwgnnq4A2bdpEvXr1UuVx48aVuO3YsWNTt7OysqJLly6F1tt7772LbFeclStXxpdffpkqt2vXLurWrVvi8QEAAAAAAAAgnK8SsrOz45BDDkmVZ82aFZ999tlG282ZMyet3l577RWNGjUqtO4ee+yRdt35kSNHxqpVqzbax7Bhw2L16tWpcvfu3TfaBgAAAAAAAIB0wvkq4le/+lVa+amnntpom6effjrWrl2bKh955JFF1k0kEvHLX/4yVV6yZEm89tprJepjQxvuAwAAAAAAAICSEc5XEd27d4+2bdumyi+//HKMHj26yPrffvttPPTQQ6lykyZNomfPnsX20bdv38jJyUmVb7vttli4cGGR9V966aW0MXTv3j3at29fbB8AAAAAAAAAFJRd2QNgnUQiEZdffnmcd955ERGRTCbjggsuiP79+8cBBxyQVnfSpElx/vnnpy1L369fv6hZs2axfTRr1ix++9vfxsMPPxwREfPnz4/TTz897r333mjRokVa3VdeeSX+9Kc/pcrVq1ePSy65ZJMeI2zpDuqWV2F9jRrpt1UAZJ73NgC2NN7bYOO8TgAAMkc4XwozZsyII444otD7NlxefsaMGdGhQ4dC6z366KOx3377FXrfoYceGmeffXYMGjQoItYtPd+nT5/o0qVLdOrUKapVqxaTJ0+O999/P5LJZKpdjx49olevXiV6DJdddlmMHz8+xowZExERU6ZMiSOPPDK6du0arVq1iuXLl8fo0aNj8uTJae3++te/Rrt27UrUBwAAAAAAAADphPOlkEwm00L44hRVb8NQvTCXX355rFy5Mh5//PHUtk8//TQ+/fTTQusfddRRccMNN5RoTBEROTk5cffdd8cll1wSH3/8cURErF69OoYNG1Zo/ezs7Ljssss2umQ+AAAAAAAAAEWzblAVU61atfjTn/4UDzzwQHTu3LnIem3bto1bbrkl7rjjjqhRo0ap+mjUqFE89thjcdVVV8WOO+5Y5Dh+/vOfx5AhQ+Kss84q1f4BAAAAAAAASGfmfCm0aNGiwHLvmdK1a9fo2rVrfP/99zFx4sSYO3durF27Npo2bRpt2rTZ5CXmq1WrFn369IkzzjgjPv/88/j2229j7ty5UbNmzWjatGnsueee0bRp03J6NAAAAAAAAABbN+F8FbfzzjvHzjvvnLH9JxKJ6NSpU3Tq1CljfQAAAAAAAABs7SxrDwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGRYdmUPAACgoh3ULa8MreaXqa9RI/0WEgAAAAAAM+cBAAAAAAAAIOOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOyK3sAAAAAAAAAQPk4qFtehfU1aqR5wFAaXjEAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhgnnAQAAAAAAACDDhPMAAAAAAAAAkGHCeQAAAAAAAADIMOE8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZJpwHAAAAAAAAgAwTzgMAAAAAAABAhmVX9gAAAAAAACrLQd3yKqyvUSPNlQIA2Jr5NAgAAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBhwnkAAAAAAAAAyDDhPAAAAAAAAABkmHAeAAAAAAAAADJMOA8AAAAAAAAAGSacBwAAAAAAAIAME84DAAAAAAAAQIYJ5wEAAAAAAAAgw4TzAAAAAAAAAJBh2ZU9AIq3evXqmDJlSkyePDkWL14cq1atim222SaaNGkSe+yxRzRv3nyT+5g2bVpMmjQpZs+eHXl5edG0adNo06ZNtG3bthweAQAAAAAAAADC+Spqzpw5MWjQoHj55ZdjyZIlRdZr06ZN9O7dO04++eTIysoqVR9vv/123HvvvTF27NhC72/Xrl2cddZZ0aNHj1LtFwAAAAAAAIB0lrWvgoYNGxbHHntsPP7448UG8xERX331Vfztb3+LXr16xdy5c0u0/2QyGTfeeGOcc845RQbzERGTJ0+OK664Ii6//PLIzc0t1WMAAAAAAAAA4H/MnK9iRo0aFZdeemmsXr06tS07Ozv233//aNu2bdSqVSsWLlwYY8eOjS+++CJVZ/z48XHGGWfEs88+G9tss02xfdx2220xePDgtG1dunSJjh07RlZWVkyePDnef//9SCaTERHx+uuvR1ZWVvzzn/8sx0cKAAAAAAAAsPUQzlchK1eujD//+c9pwfy+++4bt9xyS+ywww4F6n/wwQdxxRVXxLx58yIiYurUqdG/f/+4+uqri+xjxIgRMWjQoFS5Xr160b9//zjggAPS6k2aNCnOP//8mD17dkREvPLKK7H33ntHr169NukxAgAAAAAAAGyNLGtfhQwfPjxmzpyZKu+yyy7xwAMPFBrMR0QccMAB8eCDD0Z29v9+Y/Hcc88VuQR9MpmM22+/PVVOJBIxcODAAsF8RESHDh3i0UcfjRo1aqS23XPPPbFy5cpSPy4AAAAAAACArZ1wvgr54IMP0sp9+vSJ2rVrF9umffv20b1791R52bJl8fnnnxdad9iwYTFlypRU+bjjjot99923yH23bNky+vbtmyrPmzcvnn322WLHAwAAAAAAAEBBwvkqZM6cOWnlzp07l6hdly5d0spz584ttN7QoUPTyqeeeupG992rV6/Iysoqch8AAAAAAAAAbJxwvgrJy8tLK9esWbNE7WrVqpVWTiQSBeqsWbMm3nnnnVR5++23j06dOm10302bNk37kcDYsWNjwYIFJRoXAAAAAAAAAOsI56uQFi1apJVnzZpVonYzZsxIK++8884F6kyZMiWWLFmSKu+1114lHteGddeuXRuffvppidsCAAAAAAAAIJyvUg4++OC08n/+85+Ntlm7dm288cYbqXLz5s2jXbt2Bep98803aeXddtutxOPq0KFDWnnq1KklbgsAAAAAAACAcL5K6datW1qw/vzzz8eIESOKrJ9MJuOWW26J7777LrXtwgsvjGrVCj6t+QP1HXbYocTj2n777YvdFwAAAAAAAADFE85XIVlZWXHHHXdEgwYNImLdrPgLLrggrr322hg3blwsX748kslkLFiwIIYPHx5nnHFGPProo6n2vXr1it/85jeF7nvOnDlp5WbNmpV4XPnrzp49u8RtAQAAAAAAAIjIruwBkK5169bx7LPPxjXXXBMff/xx5OXlxZAhQ2LIkCFFttl2223j4osvjpNPPrnIOsuXL08r16lTp8Rjyl83/74AAAAAAAAAKJ5wvgraaaed4vHHH48XXnghbr755li8eHGRdTt06BDXXntt7LnnnsXuM3+gnpOTU+Lx1KhRo9h9lVQikShTO8rHhsffc7H58xzC5sPrFUrGa2XL5XMosLUqr3Oe8+iWxXOYzvEg05xDIfO8trZszqPlTzhfBX3zzTdx4403xnvvvbfRupMmTYqTTjopunbtGtddd12Ry9WvWrUqrVyacD5/3ZUrV5a47YbWL9dP5atfv35lD2ELNb/CevJ6gk3l9Qol47VC+fI5FKh8m/d7m/Nopmzefxflz/Fgy+QcytbFuZzy5zxaPoTzVcx7770XF154YaxYsSIiIqpXrx49e/aMo48+Otq2bRu1atWKRYsWxfjx4+Ppp5+Od955JyIi3n777TjhhBPiiSeeiNatWxfYb/7Z77m5uSUeU/66NWvWLO3DAgAAAADYrOy+Z8WFWxM/a1xhfQFUFOdRKEg4X4VMmzYt+vXrlwrm69WrFw8++GCBJeubNGkS3bt3j+7du8eQIUPi2muvjYiIBQsWxPnnnx8vv/xy1KpVK61N7dq108qlCefzz7rPv6+SWrRoUZnaUT4SiUTqV02LFy+OZDJZySNiU3g9webD6xVKxmtly+VzKLC1Kq/3NufRLYvPPOkcj/9xLDLDORQyr6qcv6rKOLY0zqPlvzqEcL4KufXWW9Ou537ddddt9Fryp5xySkyePDmGDBkSERHff/99PPXUU9G3b9+0evkD9WXLlpV4XPnrljWc3xpfsFVVMpn0fGzmPH+w+fB6hZLxWtk6+BwKbE0ycb5zHt38ef7SOR7/41hknnMoZEZVeV1VlXFsyZxHy0e1yh4A6/z0008xbNiwVHmnnXaKI488skRtzznnnLTyyy+/XKBO06ZN08qzZ88u8dhmzZqVVi7quvYAAAAAAAAAFE44X0V8/vnnsXbt2lR53333jUQiUaK2O+ywQ7Ro0SJV/uqrrwosRZ//OvQzZ84s8djyB/mtWrUqcVsAAAAAAAAAhPNVxvz589PKTZo0KVX7Devn5eUVuLZG/nB+0qRJJd73xIkT08rCeQAAAAAAAIDSEc5XETVq1Egrr1y5slTtV6xYkVbOf134Nm3aRL169VLlcePGlXjfY8eOTd3OysqKLl26lGpsAAAAAAAAAFs74XwV0ahRo7TyN998U+K2q1evjmnTpqXKOTk5Ubdu3bQ62dnZccghh6TKs2bNis8++2yj+54zZ05avb322qvAWAEAAAAAAAAonnC+iujQoUNUr149Vf74449j3rx5JWr71ltvxfLly1Plzp07F1rvV7/6VVr5qaee2ui+n3766Vi7dm2qfOSRR5ZoTAAAAAAAAAD8j3C+iqhdu3b87Gc/S5VXrVoVN9xww0bbLVy4MG655Za0bYcddlihdbt37x5t27ZNlV9++eUYPXp0kfv+9ttv46GHHkqVmzRpEj179tzomAAAAAAAAABIJ5yvQi688MK08tChQ+Piiy8ucgb9+PHjo3fv3jFjxozUtm233TZOPvnkQusnEom4/PLLU+VkMhkXXHBBfPDBBwXqTpo0Kfr06ROrVq1KbevXr1/UrFmzVI8JAAAAAAAAgIjsyh4A/9OlS5c477zz4r777ktte+ONN2LEiBGx3377Rdu2baN27dqxaNGiGDduXEyYMCGtffXq1ePWW2+N2rVrF9nHoYceGmeffXYMGjQoIiKWLFkSffr0iS5dukSnTp2iWrVqMXny5Hj//fcjmUym2vXo0SN69epVzo8YAAAAAAAAYOsgnK9iLrvssqhevXoMHDgwda333NzcGDVqVIwaNarIdo0aNYqbb745DjjggI32cfnll8fKlSvj8ccfT2379NNP49NPPy20/lFHHVWiJfYBAAAAAAAAKJxl7augfv36xXPPPRc9evSIGjVqFFu3cePGce6558Zrr70WXbt2LdH+q1WrFn/605/igQceiM6dOxdZr23btnHLLbfEHXfcsdFxAAAAAAAAAFA0M+erqA4dOsQ///nPuPHGG2PSpEnxzTffxJIlS2LlypVRp06daNiwYXTo0CFatWoViUSiTH107do1unbtGt9//31MnDgx5s6dG2vXro2mTZtGmzZtol27duX8qAAAAAAAAAC2TsL5Ki4nJyc6d+5c7Az3TbXzzjvHzjvvnLH9AwAAAAAAAGztLGsPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGueY8AAAApXJQt7xStphf5r5GjfSbcgAAAGDL4FsOAAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyLLuyBwAAAABsGQ7qlldhfY0aab4BAAAAmxf/kwUAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyTDgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGCecBAAAAAAAAIMOE8wAAAAAAAACQYcJ5AAAAAAAAAMgw4TwAAAAAAAAAZJhwHgAAAAAAAAAyLLuyB1BS3333XQwfPjx++OGHyMnJidatW8cvfvGLqF+/fmUPDQAAAAAAAACKVSnh/A8//BAffvhhqtyjR4/IyckptG4ymYxbbrklBg8eHHl5eWn33XTTTfGnP/0pfv3rX2d0vAAAAAAAAACwKSolnH/sscfiiSeeiIiI3XffPU488cQi695+++3xyCOPpMqJRCIi1oX2y5cvj2uuuSaSyWT85je/yeygAQAAAAAAAKCMKuWa82+//XYkk8mIiGJnvX/77bfx0EMPRSKRSAvl17dNJBKRTCbjhhtuiDlz5mR+4AAAAAAAAABQBhUezi9YsCCmTZuWKnft2rXIuo888kjaUvbdunWLu+++OwYOHBi/+MUvIplMRiKRiJUrV8agQYMyOm4AAAAAAAAAKKsKD+e//vrr1O1GjRpF8+bNC623du3a+O9//5uaMX/ggQfGfffdF0cccUQcdthh0b9//+jRo0dqJv3QoUNTM+oBAAAAAAAAoCqp8HB+5syZEbFuSfpWrVoVWW/ChAmxaNGiVOB+/vnnF6hz2WWXpcL7+fPnxzfffJOBEQMAAAAAAADApqnwcH7RokWp2w0bNiyy3pgxY1K3mzRpEnvvvXeBOttvv320bt06VZ4yZUr5DBIAAAAAAAAAylF2RXe4cuXK1O1atWoVWW/s2LERsW6G/YEHHlhkvV122SW1VP78+fPLaZQAUH4O6pZXYX2NGlnhv7sDAAAAqDCl/56l7LmB71kAKG8V/s6SlZWVur1hUJ/f+nA+IgqdNb9e7dq1U7eXL1++iaMDAAAAAAAAgPJX4eH8Nttsk7o9Z86cQut88803abPg99prryL3t2HAX62aX7EBAAAAAAAAUPVUeJq94447RkREMpmML7/8MlatWlWgzltvvZW6Xa9evbTryue3ePHi1O06deqU40gBAAAAAAAAoHxUeDi/2267RSKRiEQiEatWrYrnnnsu7f41a9bEs88+GxHrrje/zz77FLu/qVOnpm43a9as/AcMAAAAAAAAAJuowsP5xo0bp5apTyaTceutt8ZLL70UK1asiB9++CEuv/zymD59eqr+L3/5yyL3NW/evJg3b16qvPPOO2du4AAAAAAAAABQRtmV0ekZZ5wRn376aSQSiVixYkVcddVVcdVVV6XuTyQSkUwmo0mTJnHkkUcWuZ933303dbt27drRqlWrjI4bAAAAAAAAAMqiwmfOR6ybDf+LX/wikslkKohf/y8iUtuvvPLKyMnJKXI///3vfyNiXZjfqVOnSCQSFTJ+AAAAAAAAACiNSgnnIyJuvfXWOPHEE1OB/HrJZDJycnLiqquuiqOOOqrI9rNmzYp33303FcgfdNBBGR0vAAAAAAAAAJRVpSxrHxGRk5MTN9xwQ5x55pkxfPjwmDlzZkREtGrVKo444oho2rRpse3feeedaNOmTap86KGHZnS8AAAAAAAAAFBWlRbOr9eqVasyXSv+5JNPjpNPPjkDIwIAAAAAAACA8lVpy9oDAAAAAAAAwNZCOA8AAAAAAAAAGVYpy9p37949IiISiUQ8+eSTG72+fFHmzJkTvXv3Tu1r2LBh5TZGAAAAAAAAACgvlRLOz5gxIyLWBepr164t837WrFmTti8AAAAAAAAAqIosaw8AAAAAAAAAGSacBwAAAAAAAIAM26zD+TVr1qRuZ2dXygr9AAAAAAAAALBRm3U4/+OPP6Zu16lTpxJHAgAAAAAAAABF26zD+VGjRkVERCKRiGbNmlXyaAAAAAAAAACgcBlbC37mzJklqjdnzpxS7Tc3NzfmzZsXo0aNikceeSS1fbfddivVfgAAAAAAAACgomQsnD/ssMMikUgUWyeZTEbv3r3L3EcymUzdPuKII8q8HwAAAAAAAADIpIyF8+ttGKCX5f6iJBKJSCQSkUwmo3PnznHooYeWaT8AAAAAAAAAkGmb7TXn14f6v/jFL+K+++7b6Cx9AAAAAAAAAKgsGZs5f8IJJxR534svvhgR62a/H3HEEVGnTp0S7zcnJyfq1asXrVu3jn333TeaN2++yWMFAAAAAAAAgEzKWDh/0003FXnfiy++mJrpfuWVV8YOO+yQqWEAAAAAAAAAQKWrtGXty3qteQAAAAAAAADY3GRs5nxxNpxV37Bhw8oYAgAAAAAAAABUmEoJ54u7Hj0AAAAAAAAAbGkqbVl7AAAAAAAAANhaCOcBAAAAAAAAIMOE8wAAAAAAAACQYZVyzfkNrVy5Ml5//fX48MMP44svvoj58+fHTz/9FGvXri3VfhKJREyaNClDowQAAAAAAACAsqvUcP7pp5+O2267LZYuXRoREclksjKHAwAAAAAAAAAZUWnh/A033BBPPvlkKpBPJBKRSCQionQhfSKREOoDAAAAAAAAUKVVSjj/6quvxhNPPBER/wvXk8lkVK9ePXbaaaeoV69eZGdX+or7AAAAAAAAAFAuKiUB79+/f0T8L5jffffd4+KLL44DDzxQKA8AAAAAAADAFqfCk/ApU6bE9OnTU0vYd+vWLQYMGBBZWVkVPRQAAAAAAAAAqBDVKrrDiRMnRsS668pnZWXFddddJ5gHAAAAAAAAYItW4eH8ggULImLdkvYdO3aM7bbbrqKHAAAAAAAAAAAVqsLD+Q1nye+www4V3T0AAAAAAAAAVLgKD+ebNWuWur169eqK7h4AAAAAAAAAKlyFh/Pt27dP3Z4+fXpFdw8AAAAAAAAAFa7Cw/lddtklOnfuHMlkMiZPnhxz5syp6CEAAAAAAAAAQIWq8HA+IuLcc8+NiIhkMhkDBgyojCEAAAAAAAAAQIWplHD+0EMPjVNPPTWSyWQ8++yz8cwzz1TGMAAAAAAAAACgQlRKOB8Rcc0116QC+muvvTb+7//+L7799tvKGg4AAAAAAAAAZEx2ZXR61VVXpW43bNgwFi5cGK+++mq8+uqrseOOO0br1q2jfv36kUgkSrzPRCIRf//73zMxXAAAAAAAAADYJJUSzr/44otpwXsikYhkMhkREdOmTYvp06eXan/JZFI4DwAAAAAAAECVVSnhfGFKM0seAAAAAAAAADYnlRbOr58pDwAAAAAAAABbukoJ5996663K6BYAAAAAAAAAKkWlhPPNmzevjG4BAAAAAAAAoFJUq+wBAAAAAAAAAMCWTjgPAAAAAAAAABkmnAcAAAAAAACADBPOAwAAAAAAAECGZVf2ANabP39+vPvuuzFmzJiYNm1aLF68OJYtWxYREcOGDavk0QEAAAAAAABA2VV6OD937ty466674tVXX43Vq1en3ZdMJiORSBTa7sUXX4yrr746IiLq1asXo0aNiurVq2d8vAAAAAAAAABQWpW6rP17770Xxx9/fLzwwguRm5sbyWSyxG2PPvroaNiwYSSTyViyZEmMGDEigyMFAAAAAAAAgLKrtJnzY8aMifPOOy9Wr16dNjs+Kysr6tatGwsXLiy2fU5OThx11FHxxBNPRMS6pe9/8YtfZHTMAMCmO6hbXoX1NWpkpf4OEQAAAAAAUirlG+slS5ZEv379UsF8MpmMrl27xqOPPhpjx46NZ599tkT76d69e+r2Rx99lKnhAgAAAAAAAMAmqZSZ84MGDYpFixalyldeeWX06dMnVS7qOvP5denSJbKysmLt2rUxd+7cmDNnTjRt2rScRwsAAAAAAAAAm6bCZ84nk8l47rnnIpFIRCKRiJ49e6YF86VRo0aN2GmnnVLlb775ppxGCQAAAAAAAADlp8LD+YkTJ8bChQsjmUxGtWrV4uKLL96k/TVv3jx1e8aMGZs6PAAAAAAAAAAodxUezq+f3Z5IJKJDhw6x7bbbbtL+6tatm7q9dOnSTdoXAAAAAAAAAGRChYfzCxYsSN3ecNZ7WWVlZaVur1q1apP3BwAAAAAAAADlrcLD+bVr16Zubxisl9VPP/2Uur3hLHoAAAAAAAAAqCoqPJxv1KhR6vaPP/64yfubOnVq6naDBg02eX8AAAAAAAAAUN4qPJzfbrvtIiIimUzGxIkTI5lMlnlfs2fPjunTp6fKrVu33uTxAQAAAAAAAEB5q/BwvkuXLpGdnR0REcuWLYu33nqrzPsaMmRI6na9evWiffv2mzw+AAAAAAAAAChvFR7O165dO7p06RIR62bP33777ZGbm1vq/XzzzTfx2GOPRSKRiEQiEd26dSvnkQIAAAAAAABA+ajwcD4i4uyzz46IiEQiEd9++21cfPHFsWrVqhK3/+abb+Lss8+OVatWpZbF79u3b0bGCgAAAAAAAACbqlLC+YMPPjgOOOCAVLD+9ttvx9FHHx0vvfRSrFixosh206ZNi1tvvTV+85vfxKxZsyKZTEYikYhjjz022rZtW1HDBwAAAAAAAIBSya6sjm+//fbo2bNnzJgxIyIifvjhh7jqqqviT3/6UzRr1iyt7llnnRXfffddqu76UD4iolWrVvG3v/2tYgcPAAAAAAAAAKVQKTPnIyIaNmwYDz30UOy6666psD2ZTMaaNWvihx9+SNVLJpPx3nvvxQ8//BDJZDKtbrt27eKhhx6KWrVqVdbDAAAAAAAAAICNqrRwPiJi5513jmeffTZOOeWUyM7+3yT+RCKR9m/DbRERWVlZcdJJJ8WQIUMKzLIHAAAAAAAAgKqm0pa1X69mzZrx17/+Nc4///x4+umn4/33348JEybEmjVrCtRt06ZNHHTQQXHKKafETjvtVAmjBQAAAAAAAIDSq/Rwfr3tttsuLr744rj44osjNzc35s2bF4sWLYrVq1dHw4YNo3HjxrHNNttU9jABAAAAAAAAoNSqTDi/oZycnGjevHk0b968socCAAAAAAAAAJusUq85DwAAAAAAAABbA+E8AAAAAAAAAGSYcB4AAAAAAAAAMkw4DwAAAAAAAAAZll3eOzz99NPLe5clkkgk4rHHHquUvgEAAAAAAACgOOUezn/88ceRSCTKe7fFSiaTFd4nAAAAAAAAAJRUuYfzpZVMJlO3Sxqwl6UNAAAAAAAAAFSWjITzG4bnJbE+YC9puw3rl7YvAAAAAAAAAKho5R7Of/nllyWuO3To0PjrX/8aS5YsiWQyGbvttlsce+yx0alTp2jZsmXUrVs3IiJ++umn+Pbbb2P8+PHx6quvxhdffBGJRCLq168f1157bfzqV78q74cBAAAAAAAAAOWm0pa1f+qpp+L666+PiIhGjRrFX//61/jFL35RaN3GjRtH48aNY5999okzzzwz3njjjbjuuutiwYIFcfnll8f8+fPjt7/9bUUOHwAAAAAAAABKrFpldDp+/Pi44YYbIplMRuPGjeOJJ54oMpgvzC9/+ct44oknolGjRpFMJuOmm26KcePGZW7AAAAAAAAAALAJKiWcHzBgQOTl5UUikYirr746WrZsWep9tGzZMq655pqIiMjLy4sBAwaU9zABAAAAAAAAoFxUeDj/448/xqhRoyKRSETjxo036XrxRx55ZDRu3DiSyWR88MEH8eOPP5bjSAEAAAAAAACgfFR4OP/ZZ5/F2rVrIyKiQ4cOkUgkyryvatWqxR577BEREWvXrrW0PQAAAAAAAABVUoWH83PmzEndrlev3ibvb5tttkndnjt37ibvDwAAAAAAAADKW4WH88uWLUvdLo9l6OfPn1/ovgEAAAAAAACgqqjwcH7bbbeNiIhkMhmfffZZrFy5ssz7WrlyZXz22WepcuPGjTd5fAAAAAAAAABQ3io8nG/dunVERCQSiVi5cmUMHjy4zPsaPHhwrFixIlXeddddN3l8AAAAAAAAAFDeKjyc79SpU2y//fYRsW72/IABA+Ltt98u9X5GjhwZ99xzTyQSiYiIaNasWXTq1KlcxwoAAAAAAAAA5aHCw/mIiL59+0YymYxEIhGrVq2KCy+8MP75z3/GkiVLNtp2yZIlccstt0S/fv1i9erVqf2cddZZFTByAAAAAAAAACi97Mro9NRTT43XX389xo4dG4lEItasWRMPP/xwPPHEE3HQQQfFnnvuGTvvvHNss802kUgk4qefforvv/8+xo0bF6NGjUoL5SMi9tprrzj11FMr46EAAAAAAAAAwEZVSjifSCTigQceiD59+sTEiRMjkUhEMpmMVatWxfDhw2P48OFFtk0mk6l9JJPJ2H333eOBBx6oqKEDAAAAAAAAQKlVyrL2ERF169aNJ554Ik455ZTUtvUz4ZPJZKH/NqwTEdG7d+944oknYptttqnYwQMAAAAAAABAKVTKzPn1atWqFX/961/jN7/5TQwePDjeeOONWLVqVZH1k8lk1KhRI4488sg47bTTYo899qjA0QIAAAAAAABA2VRqOL/eHnvsEbfcckvccMMN8fnnn8eECRNi/vz5sXjx4oiIqF+/fjRu3Dj22GOP6NixY+Tk5FTyiCvPrFmz4vPPP4+ZM2fG8uXLo0aNGrHttttGy5Yto3379mU+NtOmTYtJkybF7NmzIy8vL5o2bRpt2rSJtm3blvMjAAAAAAAAANj6VIlwfr2cnJzYe++9Y++9967soVQpeXl58corr8TgwYNj4sSJRdarXr167LXXXnHOOefEwQcfXKJ9v/3223HvvffG2LFjC72/Xbt2cdZZZ0WPHj3KNHYAAAAAAAAAqlg4T0E//PBD/P73v49x48ZttO7q1avj448/jj333HOj4XwymYy///3vMXjw4GLrTZ48Oa644ooYOXJk3HzzzVv1qgUAAAAAAAAAZSWcr8K++uqr+N3vfhfz5s1LbUskEtGpU6do3759NG7cOFatWpVa6n769Okl3vdtt91WIJjv0qVLdOzYMbKysmLy5Mnx/vvvRzKZjIiI119/PbKysuKf//xn+Tw4AAAAAAAAgK2IcL6KWrBgQZx11llpwfzhhx8eV111VbRo0aLQNlOmTIkXXngh6tatW+y+R4wYEYMGDUqV69WrF/37948DDjggrd6kSZPi/PPPj9mzZ0dExCuvvBJ777139OrVq6wPCwAAAAAAAGCrVK2yB0DhbrzxxlQoHhFx3nnnxYABA4oM5iMi2rZtG1deeWWce+65RdZJJpNx++23p8qJRCIGDhxYIJiPiOjQoUM8+uijUaNGjdS2e+65J1auXFnahwMAAAAAAACwVauUmfMvvfRSRvZ7/PHHZ2S/Fe3999+P1157LVXu3r17XHbZZeWy72HDhsWUKVNS5eOOOy723XffIuu3bNky+vbtGwMHDoyIiHnz5sWzzz4bp512WrmMBwAAAAAAAGBrUCnh/JVXXhmJRKLc97ulhPMPPPBA6nb16tXjqquuKrd9Dx06NK186qmnbrRNr1694v7774//Z+/e46yq6/3xvzczXETugsOlQCFQUAlQUk8Wlqej6TkoHa/HLpR3j9ojK7PzCMtLaipqZmmadvFbeSlSK+scNaEQzQvghVFIRPDCTYmLIMMws35/8GPLHm4zzF57r5l5Ph+PeTz2Z8/6fNZrrz2zZXzttXZdXV1+DeU8AAAAAAAAQOOV9bL2SZI0+2vzOq3F66+/Hk8++WR+PG7cuPjgBz9YlLU3btwYf/3rX/Pjfv36xciRI3c6r6qqKkaNGpUfz5o1K1asWFGUTAAAAAAAAABtQdnK+V0t1HO5XP6rOetk1UMPPVTwmI455piirT1v3rxYvXp1fjx69OhGz91y27q6upg5c2bRcgEAAAAAAAC0dmW5rP1VV13VpO3r6upi9erV8Y9//CNmzJgRS5cujVwuF927d4/zzjsvunTpklLS0ps9e3bB+KCDDira2vPnzy8YDx8+vNFzR4wYUTB+9dVXi5IJAAAAAAAAoC0oSzk/YcKEXZ67cePG+M1vfhPf+973YvXq1XHvvffGnXfeGX369CliwvJ58cUX87erqqpizz33jIiIhQsXxpQpU2L69OmxePHieO+996Jnz56x9957x0c/+tE49thjY4899tjh2g0L9f79+zc6V79+/Xa4FgAAAAAAAADbV9bPnN8VlZWVcfLJJ8dPf/rT6NChQ7zyyitxzjnnRG1tbbmjNduaNWti2bJl+fEHP/jB2LhxY9x8881x9NFHx6233hovvvhivPPOO7Fu3bp48803Y/r06fG9730v/vVf/zV++MMf7vAy/0uXLi0Y9+3bt9HZGm67ZMmSRs8FAAAAAAAAaOvKcuZ8MYwaNSrOO++8mDx5csyZMyd++tOfxplnnlnuWM2ycuXKgnHv3r3jf/7nf+KBBx7Y6dx169bFTTfdFC+//HLccMMNUVm59VO7bt26gvHuu+/e6GwNt224VmPkcrkmz6F4tjz+nouWz3PI9vjZKJSF45GFDNAS+F1he/xssD1+Nsi6Yv2M+nu+dfEcFnI83udYZJPnBXYuK78nWcnR2vi3aPG12HI+IuLUU0+NH/zgB1FbWxt33313iy/n16xZUzB+/PHH8/d16tQpJk6cGEcffXQMGjQoamtrY+7cuXHvvffGgw8+mD9j/v/+7//i+uuvj4suumir9RsW6h06dGh0to4dO+5wrcbo0aNHk+eQju7du5c7Qiv1Tsn25PeppfGzUSgLxyMLGaAl8LvC9vjZYHv8bJB1Lftn1N/zaWnZPxfF53i8z7HIJs8L7FxWfk+ykoNi8G/R4mhxl7XfUufOneOAAw6IJEli8eLFMXv27HJHapaGhffmYr5Hjx5x9913x1e+8pXYZ599olOnTtG1a9c46KCD4pprrolrrrkm2rV7/6m888474+WXX95q/ZqamoJxU8r5htuuX7++0XMBAAAAAAAA2roWfeZ8RERVVVX+9sKFC2PUqFHlC9NM2yvLL7vsshg+fPh2540fPz5efPHF+PnPfx4REUmSxJ133hnXXHNNwXYNz37fsGFDo7M13LZTp06NnrtZw8v2U1q5XC7/rqZVq1blr7ZAy+T3ie3xs1EoC8cjCxmgJfC7wvb42WB7/GyQdcX6GfX3fOvitauQ4/E+xyKbPC+wc1n5PclKjtbGv0WLf1WGFl/O19XV5W8vX768jEmab1ufAT9kyJA48sgjdzr3zDPPjF/96ldRW1sbERFTp06N+vr6gjPqO3fuXDCnKeV8w7PuG67VGG3xFzarkiTxfLRwnj+2x89GoSwcjyxkgJbA7wrb42eD7fGzQdal8TPq7/mWz/NXyPF4n2ORTZ4X2Lms/J5kJUdr5t+ixdGiL2sfEfHqq6/mb7dv376MSZpvW+X8Jz7xiUbN7d27d4wcOTI/XrVqVbzyyisF2zQs1NeuXdvobA233ZVyHgAAAAAAAKCtatHl/AsvvBD/+Mc/8uM+ffqUMU3z7bHHHlu9wWDo0KGNnj9s2LCC8dKlSwvGW34EQETEkiVLGr324sWLC8Z9+/Zt9FwAAAAAAACAtq7FlvNLly6Nr33ta5HL5fL3HXTQQWVM1Hzt27ePgQMHFty3+XMcGqPhtqtWrSoYDxkypGD81ltvNXrthkX+4MGDGz0XAAAAAAAAoK1rMZ85X19fH6tXr45XXnklHnvssbjnnnti7dq1kSRJ5HK5GDt2bOy5557ljtlsH/rQh2L+/Pn5cVM+F77hth07diwYNyznq6urG732nDlzCsbKeQAAAAAAAIDGK0s5P3z48GavsbmUj4iorKyMr3/9681eMws+8pGPxP/+7//mxw0vTb8jDc9u79mzZ8F46NCh0a1bt1i9enVERMyePbvRa8+aNSt/u6KiIsaMGdPouQAAAAAAAABtXVkua58kSbO+IiJyuVwkSRKVlZVx1VVXxQEHHFCOh1J0//qv/1pwqf6ZM2c2al6SJAVle0VFRey7774F21RWVsbHP/7x/Hjx4sXx3HPP7XTtpUuXFmw3evTo6NWrV6NyAQAAAAAAAFDGz5zfsoBuqs0l/cEHHxy/+c1v4t///d+LmKy8+vbtW3BW+l/+8pdYsWLFTudNnz694DPkR44cGV26dNlqu09/+tMF41/96lc7Xfvuu++Ourq6/Pioo47a6RwAAAAAAAAA3leWy9qPHTu2yXMqKyujS5cu0atXr9hvv/3ikEMOiYEDB6aQrvzOP//8mDhxYkRE1NTUxOWXXx433HDDdrdfu3ZtfPe73y2473Of+9w2tz3iiCNi2LBhMW/evIiIeOCBB+L444/f7nOyYMGCuOOOO/LjPn36xAknnNCUhwMA0CiHHV5fsn1Nn1q296g2imMBAAAAAK1PWcr5u+66qxy7bTEOPfTQOPzww2Pq1KkREfHQQw9Fhw4d4lvf+lZ07dq1YNtFixbF1772tViwYEH+vgMOOGCrM+Q3y+VyceGFF8bZZ58dEZuuQnDuuefGTTfdFIceemjBttXV1XHOOedETU1N/r7zzjsvOnXqVIyHCQAAAAAAANBmlKWcZ+euueaaOOmkk/Kl+/333x+PPvpofOxjH4uBAwdGbW1tzJs3L5588smora3Nz+vVq1fcdNNN0a7d9s+A+sQnPhFnnHFG3H777RERsXr16pg4cWKMGTMmRo4cGe3atYu5c+fGjBkzIkmS/Lzx48fHySefnNIjBgAAAAAAAGi9lPMZ1b179/jJT34SF1xwQcyZMyciItasWRMPPfTQducMHjw4fvzjH0f//v13uv6FF14Y69evL7iKwcyZM2PmzJnb3P7oo4+OK664oomPAgAAAAAAAICICB8wmWEf+MAH4p577okLL7wwBgwYsN3t9txzz/j6178ev/vd72LgwIGNWrtdu3bxrW99K2677bYYNWrUdrcbNmxYXHPNNXHDDTdEx44dm/oQAAAAAAAAAIgynTn/+c9/PiI2ff759ddfH3vssccurfP222/HhRdemF/r5z//edEyZkX79u3jrLPOijPPPDNeeOGFWLBgQSxfvjxyuVz06tUrhg8fHvvuu+8urz9u3LgYN25cLFy4MObMmRPLli2Lurq6qKqqiqFDh8Y+++xTxEcDAAAAAAAA0DaVpZx/6qmnIpfLRURETU3NLq9TU1MTTz31VEREfr3WKpfLxciRI2PkyJGprD9o0KAYNGhQKmsDAAAAAAAAtHVlu6x9kiTl2jUAAAAAAAAAlJTPnAcAAAAAAACAlLXocr6uri5/u6KiooxJAAAAAAAAAGD7yvKZ88Xyz3/+M3+7c+fOZUwCAEBrcNjh9SXb1/SpLfp9sgAAAABAE7Xo/yP49NNPR0RELpeLPffcs8xpAAAAAAAAAGDbyn7mfC6Xa9L2tbW1sXz58nj88cfj1ltvzd8/bNiwYkcDAAAAAAAAgKJIrZwfPnz4TrdJkiQ++clP7vI+kiTJ327OOgAAAAAAAACQptTK+S2L82Jsty25XC6SJInBgwfHkUceucvrAAAAAAAAAECaUv3M+aZesr6pkiSJ/fffP2699dZo3759qvsCAAAAAAAAgF2V2pnzY8eO3e73nn766YjYVN6PHDkyOnTo0Kg1c7lcdOjQIbp16xaDBw+OQw45JA466KCi5AUAAAAAAACAtKRWzt91113b/d6+++6bP6v+hhtuiP79+6cVAwAAAAAAAADKLtXL2u9Icz5rHgAAAAAAAABaktTOnN+R8847L3+7W7du5YgAAAAAAAAAACVT9nIeANJ02OH1JdvX9KlluyANAAAAAJRFVv7/W1ZyAOyIVw8AAAAAAAAASJlyHgAAAAAAAABSVpbL2jfGypUr45577onp06fHggULYtWqVdG1a9eoqqqKQw45JI455pjYf//9yx0TAAAAAAAAAHYqlXK+vr4+5s2blx937tw5Bg4c2Oj5v/nNb+Kqq66KdevWRUREkiQREbFixYpYsWJFvPzyy/Gzn/0sJkyYEJMmTYrddtutuA8AAAAAAAAAAIoolXJ+1qxZ8dnPfjY/Pv300+OrX/1qo+b+5Cc/icmTJ+cL+YiIXC5XsM3m7/3ud7+LN954I26//fbo2LFjEZIDAAAAAAAAQPGl8pnz06dPjyRJIkmSqKioiFNPPbVR855++um4/vrrI0mSyOVy+a/Na23+2vL+zXMAAAAAAAAAIKtSOXP+qaeeiohNZ7wfcsgh0bdv30bNu+qqq6K+vj5/pnySJFFVVRUnnXRSDB8+PNq1axfz58+PKVOmxCuvvJIv6H/5y1/GSSedFIMHD07j4QAAAAAAAABAsxT9zPkkSaK6ujpfsH/qU59q1LwnnngiP2/zZesPPvjgeOihh+Lcc8+NT3ziEzFu3Lj40pe+FPfff3985jOfyW9XV1cXv/3tb4v9UAAAAAAAAACgKIpezi9cuDDee++9fHH+8Y9/vFHzHnzwwYJx165d44Ybbojdd999q20rKyvjiiuuiBEjRkTEpjcE/OlPf2pmcgAAAAAAAABIR9Eva//GG2/kb/fs2TP69evXqHl/+9vf8mfN53K5OPnkk6NXr17b3b5du3Zx7rnnxnnnnRcREYsXL47ly5dHnz59mvcAAAAAaBEOO7y+ZPuaPrXo722HNsXvKwAAQApnzi9evDgiNn3e/Ic+9KFGzXnttdfi7bffLrjv3//933c6b9y4cbHbbrvlx/PmzWtCUgAAAAAAAAAojaKX82vXrs3f7tGjR6PmzJ49u2Dcq1evGDZs2E7ntW/fPoYOHZofb35jAAAAAAAAAABkSdHL+ffeey9/u1OnTo2a88ILL+Rv53K5+PCHP9zo/VVVVeVvb/nGAAAAAAAAAADIiqKX81sW8o0ty59//vmIiEiSJCIiRowY0ej9bXlZ+y3fGAAAAAAAAAAAWVH0cr5r167526+//vpOt9+wYUO8/PLLkcvl8vc1pZzf8g0AHTp0aPQ8AAAAAAAAACiVopfzAwYMiIhNZ8EvWLAg3n333R1u/+yzz0ZtbW3BfaNHj270/lauXJm/3aVLl8YHBQAAAAAAAIASKXo5v//++0cul4tcLhcbN26MP/zhDzvc/n//938LxkOGDImePXs2en8LFizI397y8+cBAAAAAAAAICtSuaz9/vvvHxGbzp6/+eab45133tnmtkuXLo0HHnggcrlcJEkSuVwuPvWpTzV6X6+//nqsWLEiPx40aFDzwgMAAAAAAABACopezkdEHH/88fmy/e23347Pf/7zMXv27IJtFixYEOecc0689957+ftyuVyMHz++0ft58skn87c7deoUAwcObHZ2AAAAAAAAACi2yjQWnTBhQtx5552xaNGiyOVyMX/+/DjllFOiX79+UVVVFatWrcpfjr7hWfN77713o/fz+9//Pr/G/vvvH+3apfJeAwAAAAAAAABollTa7A4dOsRVV10VHTp0iIj3C/i33norZs+eHa+++mokSRJJkuTndOvWLS666KJG7+Ott96Kp59+OnK5XEREHHjggcV9EAAAAAAAAABQJKmdaj5mzJj44Q9/GLvttlv+zPjNRfrm25tL+9133z1uvPHGGDBgQKPXv/POOwvK/XHjxhX9MQAAAAAAAABAMaR6HfjDDjss/vSnP8Wxxx6bL+m3/KqoqIgjjzwyfvvb38ahhx7a6HWXL18e9913X0REJEkSe+yxR4wePTqthwEAAAAAAAAAzZLKZ85vqaqqKr73ve/F5ZdfHtXV1bFs2bLYuHFj7LHHHrH//vvH7rvv3uQ1c7lc3H777flx9+7dixkZAAAAAAAAAIoq9XJ+sw4dOsSoUaOKslbv3r2jd+/eRVkLAAAAAAAAANKW6mXtAQAAAAAAAADlPAAAAAAAAACkTjkPAAAAAAAAAClTzgMAAAAAAABAypTzAAAAAAAAAJAy5TwAAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkLLKYi94//33528feeSRsdtuuxV7FwAAAAAAAADQohS9nL/44osjl8tFRMRHPvKRbZbzCnxoPQ47vL5k+5o+1cU+AABgW/y7HFqOXft9fWeX9uX3FQAAsqXo5XxERJIk+YJ+WxpT4AMAAAAAAABAa1G2t88mSVKuXQMAAAAAAABASRW9nK+sfP9k/I0bNxZ7eQAAAAAAAABocYpeznfv3j1/e/HixcVeHgAAAAAAAABanKKX83vttVf+9m9/+9tiLw8AAAAAAAAALU7lzjdpmrFjx8azzz4bERG///3vY/Xq1XHkkUdG3759Cy55v9ns2bPjzTffLNq+AQAAAAAAACBril7On3TSSXHnnXdGbW1tJEkS06ZNi2nTpm1z2yRJ4qtf/WpR9pvL5aK6urooawEAAAAAAABAMRX9svb9+vWLb33rWxGxqTCP2FTCb/m1pYbfa84XAAAAAAAAAGRR0cv5iIgTTzwxbr311hg6dKjSHAAAAAAAAIA2r+iXtd9s3LhxMW7cuFiwYEG8+OKL8c4778TatWsjSZK4+eabI2LTmfWf+9znolu3bmnFAAAAAAAAAICyS62c32zvvfeOvffeu+C+zeV8RMTEiROjf//+accAAAAAAAAAgLJJ5bL2jbH58+gBAAAAAAAAoLUrWznvs+gBAAAAAAAAaCtSv6z9tjz66KP521VVVeWIAAAAAAAAAAAlU5ZyfsCAAeXYLQAAAAAAAACURdkuaw8AAAAAAAAAbUVZzpzfntra2pgzZ0688MIL8c4778SqVasil8tFt27dYo899ogDDjgg9ttvv2jfvn25owIAAAAAAABAo2WinP/HP/4RP/vZz+KPf/xj1NTU7HDbjh07xjHHHBNf+MIXYtiwYSVKCAAAAAAAAAC7rqyXta+vr48bbrghjjvuuJgyZUqsX78+kiSJJEm22nbz/evXr48pU6bEcccdFzfccEPU1dWVITkAAAAAAAAANF7Zzpyvq6uLc845J/72t7/ly/hcLhcRsd2CfvP3IzYV+7fddlvMmTMnfvzjH0dFRUVpggMAFMlhh9eXbF/Tp5b1PZkAAAAAAG1e2cr5Sy+9NP76179GxKbSfXMhP2LEiBgzZkzsvffe0bVr14iIWLNmTSxYsCBmzZoVc+bMKZjz+OOPx3e+8524/PLLy/VQAAAAAAAAAGCHylLOP//883HvvfcWnCl/+OGHx9e+9rX40Ic+tMO58+fPj8mTJ8df/vKXfEH/m9/8Jo4//vj48Ic/XIr4AAAAAAAAANAkZbm+6Q9+8IOIiPyl6y+66KK49dZbd1rMR0QMGTIkfvSjH8XFF18cSZLkC/6bb745vcAAAAAAAAAA0AwlL+fXrVsXTz75ZORyucjlcnHSSSfFl770pSavM3HixDjllFPyl8N/8sknY926dSkkBgAAAAAAAIDmKXk5/+yzz0ZtbW0kSRIVFRXx5S9/eZfXuuCCC6KyctOV+Tdu3BjPPvtssWICAAAAAAAAQNGUvJxfunRpRETkcrk44IADomfPnru8Vs+ePeOAAw7Ij5csWdLsfAAAAAAAAABQbCUv51esWJG/3b9//2av169fv/ztf/7zn81eDwAAAAAAAACKreTlfIcOHfK333vvvWavV1NTs821AQAAAAAAACArSl7O77HHHvnb8+fPb/Z6r7zySv52r169mr0eAAAAAAAAABRbycv5wYMHR0REkiSxaNGieO6553Z5reeffz4WLly41doAAAAAAAAAkCUlL+f322+/6NWrV+RyuUiSJC699NKCS9M3Vk1NTVx66aX5cc+ePWP//fcvZlQAAAAAAAAAKIqSl/MREf/xH/8RSZJELpeLl156KU4//fR4++23Gz3/nXfeiTPPPDPmzJkTERG5XC7+4z/+I624AAAAAAAAANAsZSnnzz777Nh9990jYtPl7Z955pn49Kc/HTfeeOMOP4f+1Vdfje9///vx6U9/Op566qnI5XIREdG5c+c466yzSpIdAAAAAAAAAJqqshw77dmzZ3zve9+LCy64IH/fmjVr4sc//nH8+Mc/jm7dusWgQYOia9euERHx7rvvxmuvvRarV6+OiMifdZ8kSVRUVMRVV10VvXr1KsdDAQAAAAAAAICdKks5HxHxr//6r3HZZZfFpZdeGhs3bsyX7RERq1atiueffz5/ZnxE5L8XEflt27dvH5dcckn827/9W8nzAwAAAAAAAEBjleWy9psdf/zxce+998bw4cPz5Xsul8t/bWnL+5IkieHDh8c999wTJ5xwQslzAwAAAAAAAEBTlO3M+c2GDx8eU6ZMib///e9x//33x7PPPhuLFi3a5rYDBw6MAw88MI499tg45JBDSpwUAAAAAAAAAHZN2cv5zQ4++OA4+OCDIyJi9erVsWLFili9enUkSRLdu3ePXr16Rbdu3cqcEgAAAAAAAACaLjPl/Ja6deumiAcAAAAAAACg1SjrZ84DAAAAAAAAQFugnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFJWWeodvvvuu/HGG2/kxwMHDozOnTuXOgYAAAAAAAAAlEzJy/k//vGP8Z3vfGfTzisr429/+5tyHgAAAAAAAIBWreTl/D//+c9IkiQiIg444IDo0aNHqSMAAAAAAAAAQEmV/DPnu3btGhERuVwu+vbtW+rdAwAAAAAAAEDJlbyc79OnT/52bW1tqXcPAAAAAAAAACVX8nJ+6NCh+dtvvPFGqXcPAAAAAAAAACVX8nJ+7733jn322SeSJIm5c+fG0qVLSx0BAAAAAAAAAEqq5OV8RMRnP/vZiIhIkiS+//3vlyMCAAAAAAAAAJRMWcr5E044IQ4//PBIkiR+97vfxe23316OGAAAAAAAAABQEmUp5yMiJk+eHJ/61KciSZK4/vrr47TTTosnn3yyXHEAAAAAAAAAIDWV5djpN7/5zYiI6NKlS+y+++6xdu3amDFjRsyYMSN233332HfffaNXr16x++67N3rNXC4XV155ZVqRAQAAAAAAAGCXlaWc/93vfhe5XC4/zuVykSRJRES8++678eyzzzZpvSRJlPMAAAAAAAAAZFZZyvlt2bKsBwAAAAAAAIDWpGzl/OYz5QEAAAAAAACgtStLOf/oo4+WY7cAAAAAAAAAUBZlKecHDBhQjt0CAAAAAAAAQFm0K3cAAAAAAAAAAGjtlPMAAAAAAAAAkDLlPAAAAAAAAACkTDkPAAAAAAAAACmrLHeAzd55553429/+Fs8880wsWrQoVq1aFWvXro2IiEceeaTM6QAAAAAAAABg15W9nF+2bFl8//vfj9///vdRW1tb8L0kSSKXy21z3u9+97v4n//5n4iI6NatW0yfPj3at2+fel4AAAAAAAAAaKqyXtb+8ccfj+OOOy6mTJkSGzZsiCRJGj33mGOOiZ49e0aSJLF69ep47LHHUkwKAAAAAAAAALuubOX8M888E2effXasWLGi4P6Kioro0aPHTov6Dh06xNFHH50fu/Q9AAAAAAAAAFlVlnJ+9erVcd5550VtbW3kcrlIkiTGjRsXP/vZz2LWrFlx3333NWqdI444In/773//e1pxAQAAAAAAAKBZyvKZ87fffnusXLkyP7744otj4sSJ+fH2Pme+oTFjxkRFRUXU1dXFsmXLYunSpVFVVVXktAAAAAAAAADQPCU/cz5JkvjNb34TuVwucrlcnHDCCQXFfFN07NgxBg4cmB/Pnz+/SCkBAAAAAAAAoHhKfub8nDlz4p///GdEbPp8+QsuuKBZ6w0YMCAWLFgQERFvvvlms/MBAADZctjh9SXb1/SpZfnkLwAAAADagJL/n6fNZ7fncrkYMWJE9O7du1nrde3aNX/73XffbdZaAAAAAAAAAJCGkpfzK1asyN8eMGBAs9erqKjI366pqWn2egAAAAAAAABQbCUv5+vq6vK3tyzWd9WaNWvyt7c8ix4AAAAAAAAAsqLk5XyvXr3yt99+++1mr/fqq6/mb/fo0aPZ6wEAAAAAAABAsZW8nN9zzz0jIiJJkpgzZ04kSbLLay1ZsiRef/31/HjIkCHNzgcAAAAAAAAAxVbycn7MmDFRWVkZERFr166NRx99dJfX+vWvf52/3a1bt9h3332bnQ8AAAAAAAAAiq3k5Xznzp1jzJgxEbHp7Pnrr78+NmzY0OR15s+fHz//+c8jl8tFLpeLww8/vMhJAQAAAAAAAKA4Sl7OR0ScccYZERGRy+ViwYIFccEFF0RNTU2j58+fPz/OOOOMqKmpyV8W/7TTTkslKwAAAAAAAAA0V1nK+Y997GNx6KGH5ov1adOmxTHHHBP3339/vPfee9udt2jRorjuuuviP//zP2Px4sWRJEnkcrn4j//4jxg2bFip4gMAAAAAAABAk1SWa8fXX399nHDCCfHmm29GRMQbb7wR3/zmN+Nb3/pW9O3bt2Db008/PV577bX8tptL+YiIwYMHx6WXXlra8AAAAAAAAADQBGU5cz4iomfPnnHHHXfEhz70oXzZniRJbNy4Md544438dkmSxOOPPx5vvPFGJElSsO0+++wTd9xxR+y2227lehgAAAAAAAAAsFNlK+cjIgYNGhT33XdfnHLKKVFZ+f5J/LlcruBry/siIioqKuLEE0+MX//611udZQ8AAAAAAAAAWVO2y9pv1qlTp/j2t78d55xzTtx9990xY8aMePHFF2Pjxo1bbTt06NA47LDD4pRTTomBAweWIS0AAAAAAAAANF3Zy/nN9txzz7jgggviggsuiA0bNsTy5ctj5cqVUVtbGz179ow99tgjunTpUu6YAAAAAAAAANBkmSnnt9ShQ4cYMGBADBgwoNxRAAAAAAAAAKDZyvqZ8wAAAAAAAADQFijnAQAAAAAAACBlmbys/caNG2PlypWxatWqiIjo3r17dO/ePdq3b1/mZAAAAAAAAADQdJkp51966aWYMmVKPPvsszFv3ryoq6sr+H5FRUUMGzYsDjzwwJgwYUKMGDGiTEkBAAAAAAAAoGnKXs7Pnz8/vv3tb8ezzz4bERFJkmxzu40bN0Z1dXW89NJL8f/+3/+LAw88MC699NIYMmRIKeMCAAAAAECbc9jh9SXb1/Sp2f5EXscCgF1V1lf1e++9NyZMmBDPPvtsvpTP5XL5r80a3pckSTzzzDMxYcKEuO+++8qSHQAAAAAAAAAaq2xnzt99991x6aWXRpIk+eJ9c0HfsWPHGDBgQHTt2jUiItasWRNvvvlm1NTURETkS/oNGzbEJZdcEkmSxIknnlieBwIAAAAAAAAAO1GWcn7+/PlxxRVXRETkS/nOnTvHSSedFP/+7/8e++67b1RUVBTMqauri5dffjl+//vfx7333hvr1q3Lz7388svjoIMOisGDB5fj4QAAAAAAAADADpXlsvbf+973YuPGjRGx6RL1Bx10UPzpT3+Kb3zjG7HffvttVcxHRFRUVMR+++0XF198cTz00ENx4IEH5s+6r62tje9973ulfhgAAAAAAAAA0CglL+dXrFgRjz/+eP7S9Pvvv3/ccccdUVVV1eg1+vbtG3feeWeMGDEif9/jjz8eK1asKHpeAAAAAAAAAGiukpfzzzzzTNTV1eU/X/473/lOdOzYscnrdOzYMb7zne/k16mrq4tnnnmmqFkBAAAAAAAAoBhKXs4vXbo0IjZ91vxee+0V+++//y6vNXLkyNh77723WhsAAAAAAAAAsqTk5XxNTU3+9pAhQ5q93pZrbLk2AAAAAAAAAGRFZal3uOeee+Zvt2/fvtnrbbnGlmsDAAAAAAAAbdthh9eXbF/Tp5b8vGhamJL/hHzwgx/M337zzTebvd5bb721zbUBAAAAAAAAICtKXs6PGjUq+vXrF0mSxJw5c2LZsmW7vNbSpUvjhRdeiFwuF1VVVTF69OgiJgUAAAAAAACA4ih5OZ/L5eL444+PiIj6+vq49tprd3mta6+9NurrN12KYvOaAAAAAAAAAJA1ZfnggzPOOCP23XffSJIk/vCHP+xSQX/ttdfGH/7wh4iIGDp0aJxxxhnFjgkAAAAAAAAARVFZjp126NAhfvKTn8SZZ54Z1dXVceedd8ZTTz0V5513XnzsYx+Ldu22/Z6B+vr6+Nvf/hY/+MEPYs6cORERMWLEiLjtttuiY8eOpXwIrc6iRYuiuro6lixZEvX19VFVVRVDhw6NYcOGlTsaAAAAAAAAQItX9HL+5ptvbvS2hx12WLz55puxatWqeOGFF+Lss8+Obt26xf777x977bVXdOnSJSIi3n333XjttdfixRdfjNWrV0dERJIk0b179/jYxz4Wd999d0REnHfeecV+OJl1xRVXxF133VVw34QJE+Lqq69u0jrTpk2LW265JWbNmrXN7++zzz5x+umnx/jx43c5KwAAAAAAAEBbl0o5n8vlmjQnl8tFkiSRJEmsWrUqZsyYETNmzNhquyRJCuasXr06brvttvx9baWcnz17dvzyl79s1hpJksSVV14Zv/jFL3a43dy5c+PrX/96TJ06Na6++uro0KFDs/YLAAAAAAAA0BaV5bL229KYQn972yRJ0uQ3BLRUtbW1MWnSpKivr2/WOpMnT96qmB8zZkwccMABUVFREXPnzo0ZM2bk3xDxxz/+MSoqKuLaa69t1n4BAAAAAAAA2qJUyvktz3CnuG677baYN29eRET06dMnli9f3uQ1Hnvssbj99tvz427dusVNN90Uhx56aMF21dXVcc4558SSJUsiIuLBBx+MAw88ME4++eRmPAIAAAAAAACAtqfo5fzOLpPOrnv11Vfj1ltvjYiI3XbbLS688ML45je/2aQ1kiSJ66+/Pj/O5XLxox/9KMaOHbvVtiNGjIif/exnceyxx0ZNTU1EbPrYguOOOy46derUjEcCAAAAAAAA0LYUvZz/yEc+UuwliU2l+qRJk2LDhg0REXHuuefGgAEDmrzOI488kj/zPiLi2GOP3WYxv9nee+8dp512WvzoRz+KiIjly5fHfffdF5/73OeavG8AAAAAAACAtqpduQPQOHfffXc888wzERExbNiw+OIXv7hL6/z5z38uGJ966qk7nXPyySdHRUXFdtcAAAAAAAAAYMeU8y3A0qVLY/LkyRGx6TL0l156abRv377J62zcuDH++te/5sf9+vWLkSNH7nReVVVVjBo1Kj+eNWtWrFixosn7BwAAAAAAAGirlPMtwOWXXx5r1qyJiIgTTzwxxowZs0vrzJs3L1avXp0fjx49utFzt9y2rq4uZs6cuUsZAAAAAAAAANoi5XzG/d///V88/PDDERGxxx57xFe/+tVdXmv+/PkF4+HDhzd67ogRIwrGr7766i7nAAAAAAAAAGhrlPMZtmbNmrj88svz44svvji6d+++y+s1LNT79+/f6Ln9+vXb4VoAAAAAAAAAbF9luQNstnDhwnjppZfinXfeiXfffTdqa2ubvMZ5552XQrLyueaaa2LZsmUREfEv//IvMX78+Gatt3Tp0oJx3759Gz234bZLlixpVhYAAAAAAACAtqSs5fy6devizjvvjClTpsTixYubvV5rKueffvrpuO+++yIiokOHDvHtb3+72WuuW7euYLz77rs3em7DbRuu1Ri5XK7JcyieLY9/S30uWmruNDgW2ZSF5yULGbIkC8cjCxkispMjK7JwPLKQIUKOhrKSg/dl5TnJSo4syMqxyEoOsicrPxtZyJGFDBTynBRyPN7nWBTKyvHIQo4sZMiSrByPrOTIgqwcCznS0Rq6pawpWzn/4osvxvnnnx9LliyJJEkKvtfUJzdJklb1A7Fhw4aYNGlS/ricffbZsddeezV73YaFeocOHRo9t2PHjjtcqzF69OjR5Dmkozkfj7C1d4q41o5l/2fIscimLDwvWciQJVk4HlnIEJGdHFmRheORhQwRcjSUlRy8LyvPSVZyZEFWjkVWcpA9WfnZyEKOLGSgkOekkOPxPseiUFaORxZyZCFDlmTleGQlRxZk5VjI0ZoUt1tqu8pSzi9YsCC+9KUvxerVqyNiUxm/ZUHfsKxva374wx/GggULIiJi7733jjPOOKMo69bU1BSMm1LON9x2/fr1RckEAAAAAAAA0BaUpZy/4oorYvXq1QVnux988MHx0Y9+NPbaa6/o2rVrVFRUlCNa2c2dOzfuuOOO/PjSSy9tUom+Iw3Pft+wYUOj5zbctlOnTk3e/8qVK5s8h+LJ5XL5dzWtWrWqRb4Jxs/Q+xyLbMrC85KFDFmSheORhQwR2cmRFVk4HlnIECFHQ1nJwfuy8pxkJUcWZOVYZCUH2ZOVn40s5MhCBgp5Tgo5Hu9zLApl5XhkIUcWMmRJVo5HVnJkQVaOhRzpaA3dUnMV+2oIJS/nFy9eHI8//nj+bPk+ffrED3/4wxg5cmSpo2ROfX19TJo0KWprayMiYsKECXHwwQcXbf3OnTsXjJtSzjc8677hWo3RFn9hsypJkhb5fLTEzGlxLLIpC89LFjJkSRaORxYyRGQnR1Zk4XhkIUOEHA1lJQfvy8pzkpUcWZCVY5GVHGRPVn42spAjCxko5Dkp5Hi8z7EolJXjkYUcWciQJVk5HlnJkQVZORZypK+ldktZ067UO3z66acj4v3Pib/pppsU8/+/u+66K5577rmI2PQujIsuuqio6zcs1NeuXdvouQ233ZVyHgAAAAAAAKCtKnk5v3z58ojYdBmEoUOHxujRo0sdIZPWr18fN954Y3580UUXRa9evYq6j6qqqoLxkiVLGj138eLFBeO+ffsWJRMAAAAAAABAW1Dyy9rX19fnbw8ZMqTUu8+sDRs2xLp16/LjSZMmxaRJk3Y4p+GlI+6///548MEH8+Pjjjsurrzyyvy44fF+6623Gp2vYZE/ePDgRs8FAAAAAAAAaOtKXs7vueee+dtbFvUUqqura/KcJEkK5jU8vg3L+erq6kavPWfOnIKxch4AAAAAAACg8Up+WfstP1/+jTfeKPXu27ShQ4dGt27d8uPZs2c3eu6sWbPytysqKmLMmDHFjAYAAAAAAADQqpX8zPm999479t1333j55Zfj5ZdfjmXLlhWcTd9WdevWLebOndukOX//+9/j85//fH48YcKEuPrqq7e7fWVlZXz84x+PP/zhDxGx6XPkn3vuufjwhz+8w/0sXbo0nnvuufx49OjR0atXryZlBQAAAAAAAGjLSn7mfETE+eefHxGbLrv+/e9/vxwR2qxPf/rTBeNf/epXO51z9913F1wu/6ijjip6LgAAAAAAAIDWrORnzkdEHHHEEXHKKafEr3/965gyZUrstddeccYZZ5QjSptzxBFHxLBhw2LevHkREfHAAw/E8ccfH2PHjt3m9gsWLIg77rgjP+7Tp0+ccMIJJckKAAAUOuzw+pLta/rUsryXGwAAAKDVKtv/bbnkkkviv/7rvyJJkrj++uvjtNNOi7///e8FZ2hTfLlcLi688ML8OEmSOPfcc+OJJ57Yatvq6uqYOHFi1NTU5O8777zzolOnTiXJCgAAAAAAANBalOXM+YhNJfEll1wSH/nIR+Lb3/52zJgxI2bMmBGdOnWKgQMHRrdu3SKXyzVpvZ///OcpJm49PvGJT8QZZ5wRt99+e0RErF69OiZOnBhjxoyJkSNHRrt27WLu3LkxY8aMSJIkP2/8+PFx8sknlys2AAAAAAAAQItVtnI+ImLOnDnx61//OlatWhW5XC6SJIn33nsv5s6d26RiPkmSJm1PxIUXXhjr16+Pu+66K3/fzJkzY+bMmdvc/uijj44rrriiVPEAAAAAAAAAWpWylfO//e1v49vf/nbU1dXli3UFe+m0a9cuvvWtb8XHPvax+NGPfhSzZ8/e5nbDhg2L008/PY499tjSBgQAAAAAAABoRcpSzj/55JMxadKkqK+vj4jInzVP0xx88MExd+7cZq0xbty4GDduXCxcuDDmzJkTy5Yti7q6uqiqqoqhQ4fGPvvsU6S0AAAAAAAAAG1XWcr57373u1FfX58v5ffYY4/4r//6r/joRz8agwYNiq5du0ZFRUU5orVZgwYNikGDBpU7BgAAAAAAAECrVPJyfs6cOfGPf/wjfwn7MWPGxG233RZdunQpdRQAAAAAAAAAKIl2pd7hiy++GBERSZJERUVFTJ48WTEPAAAAAAAAQKtW8nJ+5cqVEbHpc+ZHjhwZ/fr1K3UEAAAAAAAAACipkpfz3bp1y99WzAMAAAAAAADQFpS8nK+qqsrfXr9+fal3DwAAAAAAAAAlV/JyftSoUVFZWRkREa+88kqpdw8AAAAAAAAAJVfycr5Xr17x8Y9/PJIkiUWLFsVLL71U6ggAAAAAAAAAUFIlL+cjIi644IL82fOXX3551NbWliMGAAAAAAAAAJREWcr5fffdNy677LLI5XIxa9asOP/882P16tXliAIAAAAAAAAAqStLOR8R8ZnPfCZuuumm6NatW0ybNi2OPPLI+P73vx8zZ86MVatWlSsWAAAAAAAAABRdZTl2Onz48IJxkiTxz3/+M2699da49dZbd2nNXC4X1dXVxYgHAAAAAAAAAEVVlnI+SZL87VwuF7lcbqv7AQAAAAAAAKC1KNtl7bcs5Dd/NWcdAAAAAAAAAMiqspw5P3bs2HLsFoASOuzw+pLta/rUsr3XDAAAMs2/ywEAALKjLOX8XXfdVY7dAgAAAAAAAEBZeEszAAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkDLlPAAAAAAAAACkTDkPAAAAAAAAACmrLMdOP//5zxd9zVwuFz//+c+Lvi4AAAAAAAAANFdZyvmnnnoqcrlc0dZLkqSo6wEAAAAAAABAMZWlnG+uJEnyt5XyANA4hx1eX7J9TZ/qk3MAAAAAAGBLZSvntyzYm2pzIZ8kSbPWAQAAAAAAAIBSKEs5//LLLzdp+/r6+li1alW88sor8dhjj8V9990Xa9asie7du8d1110XH/vYx1JKCgAAAAAAAADN1yKuOduuXbvo2bNnjB07Ni666KL405/+FAcddFCsWrUqzjnnnHjkkUfKHREAAAAAAAAAtqtFlPMN9e7dO2677bYYOnRobNy4Mb7+9a/H66+/Xu5YAAAAAAAAALBNLbKcj4jo3LlzXHzxxRERsX79+rjpppvKnAgAAAAAAAAAtq3FlvMRER/96Eejd+/ekSRJPPzww/Huu++WOxIAAAAAAAAAbKVFl/MREfvtt19ERNTU1MSzzz5b5jQAAAAAAAAAsLUWX85369Ytf3vx4sVlTAIAAAAAAAAA29biy/k1a9bkb69evbqMSQAAAAAAAABg21p0OV9XVxezZ8/Oj7t27Vq+MAAAAAAAAACwHS26nP/lL38ZK1euzI/32muvsmUBAAAAAAAAgO1pkeV8kiTxi1/8Iq655prI5XIREdGpU6c48MADy5wMAAAAAAAAALZWWY6d3n///U2es3HjxlizZk288sor8de//jXefvvtSJIkIiJyuVycdNJJ0aFDhyInBQAAAAAAAIDmK0s5f/HFF+fPeN8VW5bySZLE4MGD47//+7+LFQ8AAAAAAAAAiqqsl7VPkqRJX5ttLvaTJIlRo0bFHXfcEV27di3XwwAAAAAAAACAHSrLmfMRUVC2N3VORUVFjBo1Kk444YQYP358tGtX1vcYAAAAAAAAAMAOlaWcv+qqq5o8p6KiIrp06RJ77LFH7LPPPtGpU6cUkgEAAAAAAABA8ZWlnJ8wYUI5dgsAAAAAAAAAZeF68AAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkLLKNBZduXJlGsvuVI8ePcqyXwAAAAAAAADYkVTK+UMOOSRyuVwaS29XLpeL6urqku4TAAAAAAAAABojlXI+IiJJkrSWBgAAAAAAAIAWJbVyPs0z55MkKVjfGwEAAAAAAAAAyLJUyvn+/funsWyBt956q+SXzgcAAAAAAACAXZFKOf+Xv/wljWUjIuKJJ56I6667Lt56663U9gEAAAAAAAAAxZTaZe2L7aWXXorrrrsuZsyYERHvXzZ/8yXtP/nJT5YtGwAAAAAAAADsSObL+ddffz1uvPHG+NOf/hRJkuQ/b35zKT9mzJj42te+FmPGjClzUgAAAAAAAADYtsyW8ytWrIgf/ehHcc8998TGjRvzpfzmYn7o0KHxla98xRnzAAAAAAAAAGRe5sr59957L+6444746U9/GuvWrduqlO/bt2+cf/75MWHChGjXrl254wIAAAAAAADATmWmnK+rq4u77747brnllnjnnXfyl63fXMp37949zjzzzPjc5z4XHTp0KHNaAAAAAAAAAGi8TJTzDz30UNx4443x+uuvb1XKd+zYMT772c/GWWedFV27di1zUgAAAAAAAABourKW80888URcd911UV1dvVUp365du5gwYUKcf/75UVVVVc6YAAAAAAAAANAsZSnnq6ur47rrrosnnngiIiL/ufJJkkSSJHHEEUfEhRdeGEOGDClHPAAAAAAAAAAoqpKW86+//nrceOON8ac//SlfxOdyuYjYVNAfdNBB8bWvfS1GjRpVylgAAAAAAAAAkKqSlPMrVqyIH/7wh3HvvffGxo0b86X85rPlhw4dGhdeeGF84hOfKEUcAAAAAAAAACipVMv5devWxZ133hk//elPY926dVuV8v3794/zzz8/jjvuuPwZ9AAAAAAAAADQ2qRSzm/cuDHuvvvuuOWWW2LFihWRJElERL6U7969e5x11lnx2c9+Njp06JBGBAAAAAAAAADIjFTK+U9/+tPxxhtvbFXKd+zYMT7/+c/HmWeeGV26dElj1wAAAAAAAACQOamU86+//nrB5esjIj71qU/F+eefH3vuuWds3LgxVq5cWfT99ujRo+hrAgAAAAAAAEBzpfqZ85slSRKPPPJIPPLII6ntI5fLRXV1dWrrAwAAAAAAAMCuSr2cz+VyERH5M+gBAAAAAAAAoK0pyZnzEe+X9GlQ/AMAAAAAAACQZamU8/37909jWQAAAAAAAABokVIp5//yl7+ksSwAAAAAAAAAtEjtyh0AAAAAAAAAAFq7kn3mPFBchx1evwuz3tmlfU2f6n08AAAAAAAA0BwaNwAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlFWWOwAAxXXY4fUl29f0qd7jBQAAAADl4P8DArQ8Xk0BAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZZXlDgAAAAAt1WGH15dsX9Onen89AAAAtGT+sgcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSVlnuAAAAAADFdNjh9SXb1/SpznsAAGAT/w4FdsZvLgAAAAAAAACkTDkPAAAAAAAAAClTzgMAAAAAAABAypTzAAAAAAAAAJAy5TwAAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkDLlPAAAAAAAAACkTDkPAAAAAAAAACmrLHcAdmzlypUxb968WLhwYaxcuTKSJInu3btH//79Y9SoUdG1a9ei7GfRokVRXV0dS5Ysifr6+qiqqoqhQ4fGsGHDirI+AAAAAAAAQFumnM+Y+vr6eOaZZ+Lhhx+OJ598MubNm7fdbXO5XBx66KExceLEGDdu3C7tb9q0aXHLLbfErFmztvn9ffbZJ04//fQYP378Lq0PAAAAAAAAgHI+c4466qhYuHBho7ZNkiRmzJgRM2bMiGOOOSYuu+yy6NKlS6PnXnnllfGLX/xih9vNnTs3vv71r8fUqVPj6quvjg4dOjRqfQAAAAAAAADep5zPmBUrVmx131577RUjR46M3r17R8eOHWPJkiXxxBNPxJIlS/Lb/PGPf4xly5bFHXfcER07dtzpfiZPnrxVMT9mzJg44IADoqKiIubOnRszZsyIJEny61dUVMS1117bzEcIAAAAAAAA0PYo5zNqwIABccIJJ8SECROib9++W32/rq4u7r333rjqqquipqYmIiKefvrpuPHGG+Mb3/jGDtd+7LHH4vbbb8+Pu3XrFjfddFMceuihBdtVV1fHOeeck38TwIMPPhgHHnhgnHzyyc19eAAAAAAAAABtSrtyB6BQ//7948orr4yHH344zjnnnG0W8xERFRUVccopp8QPfvCDaNfu/afxrrvuiqVLl253/SRJ4vrrr8+Pc7lc/OhHP9qqmI+IGDFiRPzsZz8rOBP/5ptvjvXr1+/KQwMAAAAAAABos5TzGTNlypT4z//8z6ioqGjU9uPGjYtjjjkmP66trY1HH310u9s/8sgjMW/evPz42GOPjbFjx253+7333jtOO+20/Hj58uVx3333NSobAAAAAAAAAJso5zOmsrLpnzSwZTkfEfHCCy9sd9s///nPBeNTTz11p+uffPLJBW8WaLgGAAAAAAAAADumnG8FBg4cWDB+++23t7ndxo0b469//Wt+3K9fvxg5cuRO16+qqopRo0blx7NmzYoVK1bsWlgAAAAAAACANkg53wqsXbu2YLy9s+/nzZsXq1evzo9Hjx7d6H1suW1dXV3MnDmziSkBAAAAAAAA2i7lfCswd+7cgnHfvn23ud38+fMLxsOHD2/0PkaMGFEwfvXVVxs9FwAAAAAAAKCtU863Ag8++GDB+JBDDtnmdg0L9f79+zd6H/369dvhWgAAAAAAAABsn3K+hXvqqafiqaeeyo+7du0ahx122Da3Xbp0acF4e2fYb0vDbZcsWdKElAAAAAAAAABt27Y/nJwW4b333otJkyYV3PfFL34xdt99921uv27duoLx9rbblobbNlyrMXK5XJPnkA1Zee6ykiMLsnIs5CiUhRxZyBAhR9YyRGQnR1Zk4XhkIUOEHA1lJUcWZOVYyJGtDBFyNJSVHFmQlWMhR7YyUMhzUsjxeJ9jUSgrxyMLObKQIUKOhrKQIwsZIuRoKCs5imXLx9PaHlu5KOdbsEsvvTRee+21/Hjw4MFx+umnb3f7hoV6hw4dGr2vjh077nCtxujRo0eT57Aj75RsTzt+7rKSIwuycizkKJSFHFnIECFH1jJEZCdHVmTheGQhQ4QcDWUlRxZk5VjIka0MEXI0lJUcWZCVYyFHtjJQyHNSyPF4n2NRKCvHIws5spAhQo6GspAjCxki5GgoKzlatu7du5c7QqugnG+hfv7zn8fvfve7/LhDhw5x7bXXblWib6mmpqZg3JRyvuG269evb/RcAAAAAICm2O/DpStS5jy3R8n2BQC0bcr5FujPf/5zXH311QX3XXbZZbH//vvvcF7D4n7Dhg2N3mfDbTt16tTouZutXLmyyXPIhqw8d1nJkQVZORZyFMpCjixkiJAjaxkispMjK7JwPLKQIUKOhrKSIwuycizkyFaGCDkaykqOLMjKsZAjWxko5DkplJXjkYUcWciQJVk5HlnIkYUMEXI0lIUcWcgQIUdDWclRLLlcLn/G/KpVqyJJkjInKr1iXw1BOd/CPPHEE/H1r3896uvr8/d99atfjQkTJux0bufOnQvGTSnnG55133CtxmiLv7CtRVaeu6zkyIKsHAs5CmUhRxYyRMiRtQwR2cmRFVk4HlnIECFHQ1nJkQVZORZyZCtDhBwNZSVHFmTlWMiRrQwU8pwUysrxyEKOLGTIkqwcjyzkyEKGCDkaykKOLGSIkKOhrORIQ5IkrfrxlUq7cgeg8Z5//vk499xzC0r10047Lc4888xGzW9YqK9du7bR+2647a6U8wAAAAAAAABtlXK+hZg3b16cccYZsW7duvx9J5xwQlx00UWNXqOqqqpgvGTJkkbPXbx4ccG4b9++jZ4LAAAAAAAA0NYp51uARYsWxZe+9KWCz6k46qij4rLLLmvSOkOGDCkYv/XWW42e27DIHzx4cJP2DQAAAAAAANCWKeczbunSpTFx4sRYvnx5/r5x48bFddddF+3aNe3pa1jOV1dXN3runDlzCsbKeQAAAAAAAIDGU85n2IoVK2LixInx5ptv5u/7yEc+EjfddFO0b9++yesNHTo0unXrlh/Pnj270XNnzZqVv11RURFjxoxp8v4BAAAAAAAA2irlfEa9++67cfrpp8err76av2/kyJFxyy23RKdOnXZpzcrKyvj4xz+eHy9evDiee+65nc5bunRpwXajR4+OXr167VIGAAAAAAAAgLZIOZ9B69evj7PPPrvgUvLDhg2Ln/zkJ9GlS5dmrf3pT3+6YPyrX/1qp3PuvvvuqKury4+POuqoZmUAAAAAAAAAaGsqyx2AQhs3bowvf/nL8fTTT+fv22uvveKnP/1pdO/evdnrH3HEETFs2LCYN29eREQ88MADcfzxx8fYsWO3uf2CBQvijjvuyI/79OkTJ5xwQrNzAAAAAMBhh9eXbF/Tp2b7PCXHAgCg9fOvsAxJkiQuvvjimDp1av6+AQMGxM9+9rPo3bt3UfaRy+XiwgsvLNjnueeeG0888cRW21ZXV8fEiROjpqYmf9955523y5fVBwAAAAAAAGirnDmfIW+99Vb8/ve/3+q+I444oknrDBgwIB5++OHtfv8Tn/hEnHHGGXH77bdHRMTq1atj4sSJMWbMmBg5cmS0a9cu5s6dGzNmzIgkSfLzxo8fHyeffHKTsgAAAAAAAACgnM+ULYvwLe/b8vPeG6Mx21944YWxfv36uOuuu/L3zZw5M2bOnLnN7Y8++ui44oormpQDAAAAAAAAgE1c1r6NateuXXzrW9+K2267LUaNGrXd7YYNGxbXXHNN3HDDDdGxY8fSBQQAAAAAAABoRZw5nyEf+MAHYu7cuSXd57hx42LcuHGxcOHCmDNnTixbtizq6uqiqqoqhg4dGvvss09J8wAAAAAAAAC0Rsp5IiJi0KBBMWjQoHLHAAAAAAAAAGiVXNYeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFJWWe4AAMVw2OH1JdvX9Kne1wQAAAAAAEDTaJgAAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSVlnuAAAAAACtzWGH15dsX9OnOvcCAACgJfDXGwAAAAAAAACkTDkPAAAAAAAAAClTzgMAAAAAAABAypTzAAAAAAAAAJAy5TwAAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKSsstwBAAAAAIDSOuzw+pLta/pU5wcBAECEM+cBAAAAAAAAIHXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlleUOAABAeR12eH3J9jV9qveGAgAAAABtk/87CgAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkDLlPAAAAAAAAACkTDkPAAAAAAAAAClTzgMAAAAAAABAypTzAAAAAAAAAJAy5TwAAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkDLlPAAAAAAAAACkTDkPAAAAAAAAAClTzgMAAAAAAABAypTzAAAAAAAAAJAy5TwAAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkDLlPAAAAAAAAACkTDkPAAAAAAAAAClTzgMAAAAAAABAypTzAAAAAAAAAJAy5TwAAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQsspyBwAAAMi6ww6vL9m+pk/1HmoAAN7n36IA0Hr4Ly0AAAAAAAAApEw5DwAAAAAAAAApU84DAAAAAAAAQMqU8wAAAAAAAACQMuU8AAAAAAAAAKRMOQ8AAAAAAAAAKVPOAwAAAAAAAEDKlPMAAAAAAAAAkLLKcgcAAAAAAAAAaK0OO7y+ZPuaPtW52Vnm2QEAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUqacBwAAAAAAAICUKecBAAAAAAAAIGXKeQAAAAAAAABImXIeAAAAAAAAAFKmnAcAAAAAAACAlCnnAQAAAAAAACBlynkAAAAAAAAASJlyHgAAAAAAAABSppwHAAAAAAAAgJQp5wEAAAAAAAAgZcp5AAAAAAAAAEiZch4AAAAAAAAAUlZZ7gBkw8qVK2PmzJmxZMmSePfdd2PPPfeMD3zgAzF69OioqKgodzwAAAAAAACAFk0538YtWLAgJk+eHFOnTo3a2tqtvt+nT5846aST4qyzzooOHTqUISEAAAAAAABAy+ey9m3YAw88EJ/5zGfi4Ycf3mYxHxGxfPnyuPnmm+Okk06KN954o8QJAQAAAAAAAFoHZ863UdOmTYuLL7446uvr8/fttddecfDBB0ePHj1i0aJF8dhjj8X69esjIqK6ujrOOuusuOeee6JLly7lig0AAAAAAADQIinn26Bly5bFV77ylXwxn8vl4hvf+EZ84QtfiHbt3r+YwooVK+LLX/5yPPXUUxER8corr8Qll1wS119/fVlyAwAAAAAAALRULmvfBt1yyy2xdu3a/Pj888+PL37xiwXFfEREr1694ic/+UkMGTIkf99DDz0U1dXVJcsKAAAAAAAA0Boo59uYt99+O+677778eODAgXHmmWdud/uOHTvGpEmT8uMkSeKWW25JNSMAAAAAAABAa6Ocb2MeffTRqK2tzY9PPPHEaN++/Q7nHHrooTF48OD8eNq0abFu3brUMgIAAAAAAAC0Nsr5NuYvf/lLwfioo45q1Lwjjzwyf7umpiYef/zxouYCAAAAAAAAaM2U823Ms88+m7/du3fv+OAHP9ioeaNHjy4YP/3000XNBQAAAAAAANCaKefbkKVLl8aaNWvy4+HDhzd67ogRIwrG8+fPL1ouAAAAAAAAgNZOOd+GvPrqqwXj/v37N3pu7969Cz6bfsGCBUXLBQAAAAAAANDaKefbkKVLlxaM+/bt2+i5uVwuqqqqtrsWAAAAAAAAANtXWe4AlM66desKxp07d27S/N133z1/e+PGjVFTUxMdO3Zs9PxcLtek/ZEdWXnu5MhWhgg5GspCjixkiJAjaxki5GgoCzmykCFCjoaykCMLGSLkaCgLObKQIUKOhrKQIwsZIuRoKAs5spAhQo6sZYiQo6Es5MhChgg5GspCjixkiJCjoSzkyEKGCDkaykKOYmbYcq0sPLbWQDnfhjQs55tSrG9r+7Vr1zZpjR49ejRpf+zMOyXb046fOzmylSFCjoaykCMLGSLkyFqGCDkaykKOLGSIkKOhLOTIQoYIORrKQo4sZIiQo6Es5MhChgg5GspCjixkiJAjaxki5GgoCzmykCFCjoaykCMLGSLkaCgLObKQIUKOhrKQIwsZmqd79+6prNvW5JIkScodgtL44Q9/GDfddFN+/N3vfjeOP/74Rs8/9dRT45lnnsmPp06dGv369StqRgAAAAAAAIDWyGfOtyENz3Kvra1t0vwNGzbscD0AAAAAAAAAtk0534Y0/Iz5mpqaJs1vuP2Wn0EPAAAAAAAAwPYp59uQhuX82rVrmzR/y+0rKyudOQ8AAAAAAADQSMr5NqSqqqpgvHTp0kbPTZKkYPuGawEAAAAAAACwfcr5NmTIkCEF4zfffLPRc99+++2Cz6gfPHhw0XIBAAAAAAAAtHbK+TZkzz33jK5du+bHL730UqPnVldXF4yV8wAAAAAAAACNp5xvYw488MD87XfeeScWLVrUqHkzZ84sGI8dO7aouQAAAAAAAABaM+V8G3PEEUcUjP/85z83at7//u//5m937NgxPvrRjxY1FwAAAAAAAEBrppxvYz75yU9G+/bt8+P77ruv4LPkt+WJJ56IBQsW5Mfjxo2Lzp07p5YRAAAAAAAAoLWpLHcASqt3795x4oknxi9/+cuIiFi0aFHcdttt8d///d/b3L6mpiauuOKK/DiXy8U555xTkqwUz8qVK2PmzJmxZMmSePfdd2PPPfeMD3zgAzF69OioqKgodzyAVmXRokVRXV0dS5Ysifr6+qiqqoqhQ4fGsGHDyh0NoFlWrlwZ8+bNi4ULF8bKlSsjSZLo3r179O/fP0aNGhVdu3Ytyn68jgKtTX19fSxatCgWLlwYS5cujdWrV8eGDRuic+fO0aNHj9h3331j6NChRfn73GsowK7zGgrQPF5HG0c53wadddZZcf/998fatWsjIuIHP/hBdO7cOb7whS9Eu3bvX0xhxYoV8eUvfzleeeWV/H1HH310jBgxouSZ2TULFiyIyZMnx9SpU7d5hYQ+ffrESSedFGeddVZ06NChDAkBSmPt2rVRXV0dzz//fDz//PPxwgsvxJtvvpn//oABA+Ivf/lLs/Yxbdq0uOWWW2LWrFnb/P4+++wTp59+eowfP75Z+wEolfr6+njmmWfi4YcfjieffDLmzZu33W1zuVwceuihMXHixBg3btwu7c/rKNCarFixIu64446YOXNmvPTSS/Hee+/tcPvu3bvH+PHj47TTTot+/fo1eX9eQ4G26Iorroi77rqr4L4JEybE1Vdf3aR1vIYCrdEnP/nJgv//2RT/93//F4MGDWr09l5HmyaXJElS7hCU3tSpU+Occ86J+vr6/H177bVXHHLIIdGjR49YuHBhPPbYY7F+/fr89z/0oQ/FPffcE126dClHZJrogQceiO985zuxbt26nW47YsSI+MEPfhAf+MAHSpAMoHR++tOfxpQpU+KVV14p+G9eQ80p55MkiSuvvDJ+8YtfNGr7Y445Jq6++mpvigIy79/+7d9i4cKFTZ53zDHHxGWXXdbovxu8jgKt0QsvvBDHH398k+d17tw5Jk2aFJ/5zGcatb3XUKCtmj17dpxyyilb/a3flHLeayjQmpWinPc6umucOd9GHX744XHVVVfFd77znfy7t1977bV47bXXtrn98OHD4+abb1bMtxDTpk2Liy++eKs3Xxx88MHRo0ePWLRoUcGbL6qrq+Oss87y5gug1Xn66ad3eKZnMUyePHmrf4COGTMmDjjggKioqIi5c+fGjBkzYvP7If/4xz9GRUVFXHvttanmAmiuFStWbHXfXnvtFSNHjozevXtHx44dY8mSJfHEE0/EkiVL8tv88Y9/jGXLlsUdd9wRHTt23Ol+vI4CbUHv3r1j2LBhMWjQoOjevXtUVFTEypUr46WXXorZs2fn/35ft25dfPOb34wNGzbEySefvNN1vYYCbVFtbW1MmjRph2/CbwyvoUBbkcvlCq6c3ZjtG8Pr6K5Rzrdhxx13XIwcOTImT54c06ZN2+5lz0888cQ4++yz2/w7WVqKZcuWxVe+8pX8P05zuVx84xvf2O7HFjz11FMREfHKK6/EJZdcEtdff31ZcgOUSufOnWO//faLOXPmNOrqIjvy2GOPxe23354fd+vWLW666aY49NBDC7arrq6Oc845J19ePfjgg3HggQc26n+4ApTbgAED4oQTTogJEyZE3759t/p+XV1d3HvvvXHVVVdFTU1NRGx6c9SNN94Y3/jGN3a4ttdRoLWqqKiIsWPHxpFHHhkf/ehHY/Dgwdvd9s0334zLLrsspk6dmr/vyiuvjH/5l3+JgQMHbnee11Cgrbrtttvyb8Tv06dPLF++vMlreA0F2pLjjjuuyR/5sTNeR3edy9oTERH//Oc/Y+bMmbFkyZJYu3Zt9O7dOz74wQ/GmDFjoqKiotzxaIJLL700fvWrX+XHF1xwQfz3f//3NretqamJCRMmxPz58yNiU5E/ZcqUGDFiREmyAqTtK1/5SrzxxhtxwAEHxP777x8HHHBADBkyJNq1a1dwaadduax9kiQxfvz4/P8QyOVycdddd8XYsWO3uf2CBQvi2GOPzRdXffr0iUceeSQ6derUjEcIkJ7x48fHF77whTjuuOMa9TfBtGnT4uyzz86/SbR9+/bx6KOPRlVV1Ta39zoK8L66uro444wz4vHHH8/fN3HixPjmN7+5ze29hgJt1auvvhrHHntsbNiwIXbbbbe45JJLCl4rG3NZe6+hQFuw5f/7bMpHfjSG19Hmafw1DGjVevbsGUcccUSceuqpceaZZ8ZnPvOZGDt2rGK+hXn77bfjvvvuy48HDhwYZ5555na379ixY0yaNCk/TpIkbrnlllQzApTSDTfcEPfdd19ccskl8ZnPfCaGDh3apEs47cgjjzxScMn8Y489drv/AI2I2HvvveO0007Lj5cvX17wmg2QNVOmTIn//M//bPTfBOPGjYtjjjkmP66trY1HH310u9t7HQV4X0VFRXz1q18tuO9vf/vbdrf3Ggq0RUmSxKRJk2LDhg0REXHuuefGgAEDmryO11CA5vE62jzKeWhFHn300YKPJzjxxBOjffv2O5xz6KGHFlxeb9q0ac2+zDNAW/DnP/+5YHzqqafudM7JJ59cUHI1XAMgSyorm/4paFuW8xERL7zwwna39ToKUGi//faLzp0758eLFy/e7rZeQ4G26O67745nnnkmIiKGDRsWX/ziF3dpHa+hAM3jdbR5lPPQijS8JPNRRx3VqHlHHnlk/nZNTU3BZfQA2NrGjRvjr3/9a37cr1+/GDly5E7nVVVVxahRo/LjWbNmxYoVK9KICFAWDT8b+e23397mdl5HAbZt9913z9/e3idReg0F2qKlS5fG5MmTI2LT5ZMvvfTSnZ6UtC1eQwGax+to8ynnoRV59tln87d79+4dH/zgBxs1b/To0QXjp59+uqi5AFqbefPmxerVq/Pjhq+jO7LltnV1dTFz5syiZgMop7Vr1xaMt3f2vddRgK299957sXLlyvx4e3/Tew0F2qLL/7/27jyq6nLt//gHBFTYIgo4mwPOUw5ppf00U4/zfDxlmWlqaRkplsc0Z3uyxKFIn/NoDkWWQ6ZZxyzrlKfMSsUB5xkVFQdA2SIgw++PVt/67r2BvYWtAu/XWq3lde972qDXIq79ve+ZM5WUlCTp99NCmzdvflvzkEMBIG/Io3lHcR4oJOLi4owfUCWpfv36To9t0KCBKT5x4kS+7QsACiPbPJmXnHvy5Ml82RMA3AuOHDliiitUqOCwH3kUAOxt3rzZdFXdo48+6rAfORRAUfPNN99oy5YtkqTAwECNGzfutucihwJA3pBH8871SwQB3JNsk1ilSpWcHhsUFCRvb2/jlwCnTp3K170BQGGTl5xbsWLFHOcCgIJs48aNpvihhx5y2I88CgBmhw8f1ltvvWXEAQEBeuaZZxz2JYcCKEqSkpI0c+ZMI54wYYJKly592/ORQwEURYcPH9bYsWN18OBB4/q5gIAAValSRS1btlTHjh1Vr149p+Yij+YdxXmgkIiLizPF2T2l5IiHh4fKly+vc+fOOZwLAGCWl5xr2/fixYv5sicAuNt+++03/fbbb0ZcqlQpPfLIIw77kkcBFHVZWVmyWq06evSoNm/erFWrViktLU2S5Ovrq3fffVdBQUEOx5JDARQlb7/9ti5duiRJat26tXr16pWn+cihAIqiQ4cO6dChQ6Y2q9Wqc+fO6ZdfflFERITatm2r119/XdWqVctxLvJo3lGcBwqJ5ORkU+zr6+vSeD8/P+PP6enpSk1NVfHixfNlbwBQ2Njm3L/m0NzY9rWdCwAKops3b2ry5MmmtqFDh2abH8mjAIqakydPqkePHkacmZmprKwsu37t2rXTa6+9pho1amQ7FzkUQFGxY8cOrV27VpLk4+OjqVOn5nlOcigAOPbf//5X/fv3V3h4eLbXK0nk0fxAcR4oJGyTmKuFddv+N27coDgPANmwzbk+Pj5Oj7XNrUX1h1AAhcv06dN1+vRpI65Zs6aGDx+ebX/yKICiJisrSxkZGdm+7unpqaeeekrDhw/P9ekjciiAoiAtLU2TJ082Psg0cuRIVa9ePc/zkkMBFCXly5dXhw4d1Lp1a9WtW1eBgYHy8fFRYmKiDh06pG+//Vbr1683TnBKSkpSaGioIiMjdf/99zuckzyadxTngUIiNTXVFHt7e7s03jaB2s4HAPiTbY505YdQ274pKSn5sicAuFs++OADrV+/3oh9fHw0Z86cHD/oSR4FALPMzExFRkZq1apVGjRokMLCwrLNjeRQAEXBwoULderUKUlSjRo1NGLEiHyZlxwKoKh444031LJlS3l52ZeCg4ODFRwcrLZt22rYsGEaPXq0jh49Kun3PDl27Fht3rzZYY4kj+ad593eAID8YfvLz1u3brk0/o9PRmU3HwDgT7Y50jaH5sS2b4kSJfJlTwBwN2zevFmzZ882tc2YMUONGjXKcRx5FEBRExISoiNHjhj/RUdH68cff9TixYvVr18/4wP2t27d0vLlyzVy5MhscyM5FEBhd+TIES1dutSIp0+f7lLxJyfkUABFxcMPP+ywMG+rWrVqWrFihSpVqmS0xcbGGteK2CKP5h3FeaCQsL1j3tUn3237u3JPCAAUNbY515UfQm3zre1cAFBQbN++Xa+++qoyMzONtnHjxqlv3765jiWPAijqfHx8VK5cObVr105vvvmmPv30U1WsWNF4fdu2bXrvvfccjiWHAijMMjMzNXnyZOPBo759++rBBx/Mt/nJoQBgLzAwUK+88oqpbdOmTQ77kkfzjuI8UEjYJrEbN264NP6v/b28vHhyHgBykJeca9u3qP4QCqBg27dvn1544QXT/4QPGzZMzz33nFPjyaMAYFavXj0tWbLEdEXdBx98oISEBLu+5FAAhVlkZKT27t0rSQoICND48ePzdX5yKAA41rlzZ1ksFiPes2ePbt68adePPJp3FOeBQqJ8+fKmOC4uzumxWVlZpv62cwEAzGzz5MWLF50ee+HCBVNcoUKFfNkTANwpR48e1YgRI5ScnGy0DRgwwKVfnJJHAcBe7dq11a1bNyNOSUnR1q1b7fqRQwEUVikpKVqwYIERjx8/XmXLls3XNcihAOCYl5eXGjdubMTp6em6dOmSXT/yaN7lftkAgAIhJCTEFMfGxjo99sqVK6Y76mvWrJlv+wKAwsg2554/f97psbY/sJJzARQkZ86c0bPPPqvExESjrUuXLpoxY4ZL85BHAcCx1q1b6/PPPzfiI0eO2PUhhwIorNLS0kwfAJ08ebImT56c45isrCxTvGHDBm3cuNGI+/Tpo//5n/8xYnIoAGQvMDDQFCckJKhatWqmNvJo3lGcBwqJcuXKqVSpUkpKSpIkHTp0yOmxBw8eNMVFNSECgLNsfwi1zaM5OXDggCkm5wIoKOLi4jRkyBBdvnzZaGvXrp3Cw8Pl6enaoWzkUQBwLCgoyBRbrVa7PuRQAEVFRkaGy2OysrJM4zIzM02vk0MBIHu2x9g7uv6YPJp3HGsPFCItWrQw/nz16lWdOXPGqXFRUVGmuGXLlvm6LwAobGrXri1/f38j3rNnj9Njd+/ebfy5WLFiat68eX5uDQDcIj4+XkOGDDGdztSqVSu9++67pvuRnUUeBQDHbIvxf82VfyCHAsDtI4cCQPbOnj1rih1dLUIezTuK80Ah0qFDB1O8efNmp8Z9/fXXxp+LFy+uNm3a5Ou+AKCw8fLyUtu2bY34woUL2rt3b67j4uLiTP2aNWuW7/fnAUB+s1qtGj58uE6ePGm0NWnSRP/7v/+rEiVK3Nac5FEAcMz2yaOKFSva9SGHAiis/P39deTIEZf++/DDD01z9O3b1/T67NmzTa+TQwHAsQsXLujYsWNGHBgYqHLlytn1I4/mHcV5oBB57LHHTE8urV271nSXvCPbt2/XqVOnjLhdu3by9fV12x4BoLDo2rWrKf74449zHbNq1SrT8XpdunTJ930BQH5KSUnRyJEjTUfP1alTR++//74sFkue5iaPAoBZSkqKvvjiC1Nb69atHfYlhwLA7SOHAoC9RYsWKSsry4jbtGkjDw8Ph33Jo3lDcR4oRIKCgvSPf/zDiM+cOaPFixdn2z81NVWzZs0yYg8PD40aNcqtewSAwqJDhw6qU6eOEX/++efasWNHtv1PnTqlpUuXGnFwcLAGDBjg1j0CQF6kp6fr5ZdfNuW26tWra/ny5SpdunSe5yePAiis0tLSdPjwYZfGZGZmaurUqTp//rzRdv/992d7Dyc5FABuHzkUQGGWlpZmOvnOGevWrdOaNWuM2MPDQ4MHD862P3k0byjOA4XM888/Lz8/PyOOiIjQ8uXLlZmZaeoXHx+v4cOH6/jx40Zbt27d1KBBgzu2VwAoyDw8PBQWFmbEWVlZeuGFF7R9+3a7vgcPHtSQIUOUmppqtI0ePfq2j4MGAHfLysrShAkT9MMPPxhtlStX1ooVKxQUFJQva5BHARRWKSkp6tOnj0JDQ/X9998rLS0tx/579+7V4MGDtWHDBqPN09NTkyZNynYMORQAbh85FEBhlpKSoh49eigsLEw//fST0tPTs+17+fJlTZ8+XRMnTjS19+nTR40bN852HHk0bzyy/npGAYBC4YcfftCoUaNMBfnq1avroYceUkBAgGJiYvT9998rJSXFeL1WrVpavXp1no8nBYB7SWxsrDp16uTwtb8eoyRJxYoVc9hvxYoVatWqVbZrhIeHa8mSJaa25s2bq0mTJvL09NSRI0f0888/m46F6tWrl+bMmePs2wCAOy42NlaPPfaYqc3Dw0Oenq59vrty5crasmVLjn3IowAKm+vXr6tly5ZGXLJkSdWrV0+1atVS6dKlVbJkSd24cUMXL15UdHS0zp49axrv4eGhN954Q/379891LXIogKLu119/NT3d2bdvX7t75rNDDgVQGNn+LGqxWFS/fn3VrFlTpUuXlre3t65fv67Dhw9rz549dlcjP/DAA1q+fLl8fHxyXYs8enu87vYGAOS/Rx99VG+++aamTZummzdvSpJOnz6t06dPO+xfv359vffeexTmARQ6WVlZdkX47GTXL7fPMYaFhSklJUWRkZFGW1RUlKKiohz279atm+lKEQC4FznKfa7k1D840588CqCwu3nzpnbv3q3du3fn2rd8+fKaPn262rdv79Tc5FAAuH3kUABFgdVq1Y4dO3I8dv4PAwcO1IQJE5wqzEvk0dtFcR4opPr06aMmTZpo7ty52rp1q92nn6Tf7/X4xz/+oZEjRzqdbAEAZp6ennr99df1//7f/9OiRYu0Z88eh/3q1Kmj4cOHq3fv3nd2gwBwjyOPAihs/Pz89NZbb+nHH3/Ujh07FBcXl+uYBg0aqG/fvurXr59LH5wnhwLA7SOHAiiMSpQooZEjR+rXX3/VgQMHcr1iydfXVx07dtTgwYNzPMreEfLo7eFYe6AISEhIUFRUlC5evKgbN24oKChIVatWVfPmzbM9xhkAcHtiYmJ04MABXbp0SRkZGSpfvrxq166tunXr3u2tAUCBQB4FUNhcunRJJ06c0Llz53Tt2jWlpqbK19dXFotFVapUUcOGDeXv758va5FDAeD2kUMBFDbp6ek6deqUzpw5Y9SH0tPTVapUKfn7+xs5Lr/qRORR51CcBwAAAAAAAAAAAADAzTzv9gYAAAAAAAAAAAAAACjsKM4DAAAAAAAAAAAAAOBmFOcBAAAAAAAAAAAAAHAzivMAAAAAAAAAAAAAALgZxXkAAAAAAAAAAAAAANyM4jwAAAAAAAAAAAAAAG5GcR4AAAAAAAAAAAAAADejOA8AAAAAAAAAAAAAgJtRnAcAAAAAAAAAAAAAwM0ozgMAAAAAAAAAAAAA4GYU5wEAAAAAAAAAAAAAcDOK8wAAAAAAAAAAAAAAuBnFeQAAAAAAAAAAAAAA3IziPAAAAAAAAAAAAAAAbkZxHgAAAAAAAAAAAAAAN6M4DwAAAAAAAAAAAACAm1GcBwAAAAAAAAAAAADAzSjOAwAAAAAAAAAAAADgZl53ewMAAAAAAOS35ORkHTx4UDExMUpKSlJycrKKFy8uPz8/VahQQZUrV1b16tXl7e19t7cqSXrssccUGxsrSapcubL+85//3OUd3fsmTJig9evXG/F3332nKlWq3MUdFQznzp1Thw4djLhv376aPXv2XdwRAAAAABQdFOcBAAAAAIVCZmamNm3apDVr1mjHjh3KzMzMsb+Pj4/q1q2rli1b6pFHHlHLli3l4+Nzh3aLgsD2AwCjR4/WSy+9dBd3BAAAAAAoyCjOAwAAAAAKvBMnTmjChAnat2+f02PS0tIUHR2t6OhoLVu2TAsXLlTHjh3duEsAAAAAAFCUUZwHAAAAABRohw4d0pAhQ5SYmGhq9/T0VLVq1VS9enX5+fnp1q1bunbtmk6ePKlLly7dnc0CAAAAAIAii+I8AAAAAKDASk5O1siRI02FeYvFohEjRqh///4KDg52OO7y5cvatm2btmzZov/+979KS0u7QzsGAAAAAABFFcV5AAAAAECB9f777+vixYtGHBgYqMjISIWEhOQ4Ljg4WH369FGfPn0UHx+v1atXKyAgwM27BQAAAAAARRnFeQAAAABAgfXll1+a4gkTJuRamLdVtmxZjRo1Kj+3BQAAAAAAYMfzbm8AAAAAAIDbcenSJcXExBixt7e3unTpchd3BAAAAAAAkD2enAcAAAAAFEiXLl0yxQEBAfLx8bnj+0hNTdWePXt04cIFJSQkKCUlRX5+fqpUqZLq1Kmj++67L89rxMfHa/fu3bp48aKsVqsCAgJUs2ZNNW3aVN7e3nme/+zZs4qOjlZCQoKSkpLk7++voKAgNW3aVOXKlcvz/JJktVoVFRWluLg4JSQkyMfHR2XLllVISIgaNGggDw+PfFnnXpaamqpdu3YpNjZW8fHxslgsqlSpklq2bCmLxZKnuTMyMrRr1y7FxMQoPj5eAQEBKl++vJo3by5/f/98egd/SkxM1O7du3XlyhXT97N+/fqqXbt2vq8HAAAAAIUBxXkAAAAAQIGUkZFhiq1WqzIyMlSsWLE7sv5PP/2kZcuWaceOHUpLS8u2X4UKFdShQwc9/vjjqlu3rktrnDhxQvPmzdPWrVt169Ytu9ctFouGDh2q4cOHq0SJEi7NnZaWpjVr1igyMlKnT5/Otl+DBg00bNgwde/e/bYK6FFRUVq4cKF+/fVXh+9BkgIDA9W7d28999xzKlOmjMtr3CsmTJig9evXG/F3332nKlWq6Pr163rnnXe0ceNGXb9+3W6cl5eXevToobCwMJUvX96lNdPS0rR48WJ99NFHSkhIsHvdx8dHHTt21EsvvaSaNWu6/qb+IisrS5s2bdIHH3yg6OhoZWZmOuxXvnx5DRo0SIMHD87x7+XKlSs1Y8YMIw4KCtL69eud/kDI6NGjtWXLFiNu06aN3n//fXl6clAkAAAAgHsT/7cCAAAAACiQypYta4pv3rypn3/+2e3rXrlyRYMHD9awYcO0bdu2HAvzknTx4kWtXLlSs2bNcmmddevWqX///vr222+zLWpbrVZFRERo6NChDou+2Tlx4oR69uypmTNn5liYl6SDBw9q3LhxGjhwoK5cueL0Grdu3dLEiRM1cOBA/fTTT9m+B0m6evWqli1bpk6dOuk///mP02sUBPv27VOfPn300UcfZfs9Sk9P14YNG9S/f38dPnzY6bkvXLig3r17KyIiwmFhXvq9eL9p0yb17dvXVMh21dmzZ9WvXz+FhYVp79692RbmJSkuLk5z585Vt27ddOzYsWz7PfXUU+rVq5cRX7lyRWPHjlV6enqu+1m6dKnp/VSoUEHh4eEU5gEAAADc0/g/FgAAAABAgVS1alUFBweb2qZOnaoTJ064bc2jR4+qX79++vXXX03tHh4eqlu3rtq3b6+ePXuqffv2CgkJue1C4VdffaVJkybp5s2bkqTKlSvr0UcfVY8ePdSmTRv5+fmZ+kdFRWnKlClOzX3gwAE9+eSTdkX5gIAAPfLII+rRo4cefvhh+fr6ml7fvXu3Hn/8cV24cCHXNW7duqXnn39e69atM7V7eXmpWbNm6tq1q9q3b2935H9SUpJGjx6tDRs2OPVe7nWnT5/WiBEjFBsbK0kqXbq02rRpox49euixxx6ze0L88uXLGj16tJKTk3Od+9KlS3r66ad18uRJU7u/v7/xfWzTpo1KlSolSUpJSdHYsWO1e/dul9/Hvn37NGDAAB08eNDUHhAQoNatW6t79+7q1KmT6tSpY3o9NjZWAwcO1KFDh7Kde8aMGaZxO3fu1Ny5c3Pcz86dOzVv3jwj9vb21jvvvGP3gR0AAAAAuNdwrD0AAAAAoMDq2bOnli1bZsSxsbHq3bu3unTpou7du6tVq1Z2hezblZiYqFGjRikuLs5o8/X11dChQzVo0CCHhUGr1arvv/9eGzZsyPUJ+z8kJCRowoQJysrKUsuWLTV+/Hg1adLE1CclJUULFy7U4sWLjbavvvpKgwYN0gMPPJDt3FarVWPGjFFiYqLRFhgYqAkTJqhbt27y8vrz1wSpqalatWqV5s+fb3xI4Ny5c3rllVf04Ycf5nh9wPz587Vt2zYj9vDw0MCBA/XSSy/ZfZ127dqladOm6ejRo5J+v65gypQpqlevnurVq5fDV+re98orrygxMVGVK1fW+PHj1alTJ9PXLSsrS1988YWmTJlifI3Pnj2r5cuX68UXX8xx7smTJ+vs2bNGbLFY9Oqrr6pfv37y8fEx2tPS0rR27VqFh4crOTlZM2fOdOk9XL58WS+88ILpyfz7779fL7/8slq3bm131UFMTIzefvttffvtt5J+/8DFmDFjtG7dOlksFrv5S5YsqXfffVf9+/fXjRs3JEnLli1T8+bN1alTJ4f7GTNmjOnp+n/+859q2rSpS+8LAAAAAO4GnpwHAAAAABRYI0aMsLuj+9atW/riiy80cuRItWzZUr169dLrr7+u1atX6/Dhwzkex52TmTNn6ty5c0YcHBysjz/+WKGhodk+sWuxWNSzZ08tXbrU9KRvTpKTk5WSkqIePXpoxYoVdoV5SSpRooTGjRunwYMHm9pXr16d49wRERE6c+aM3Xvo1auXqTAvScWLF9czzzyjJUuWmO4N37lzp1atWpXtGocPHzZ9YEKSJk2apKlTpzr8OrVo0UKrVq0yFVdTU1P1+uuv5/heCoKEhATVrl1bn376qbp06WL3gQYPDw/16tVL4eHhpvZPP/1UWVlZ2c77zTff6IcffjBiX19fLV++XE888YSpMC/9fuf8U089pffff18lS5bUtWvXXHoPkyZN0uXLl43473//uz755BO1adPGrjAvSdWqVdPChQv19NNPG22nT5/WihUrsl2jRo0aevPNN01tr732mmJiYkxtGRkZCgsLM+2ne/fuprUAAAAA4F5GcR4AAAAAUGCVLVtWixcvtivQ/yEjI0NHjhzR2rVrNWXKFPXu3VsPPfSQQkNDc7zL3dbJkye1adMmIy5WrJjeeecd1a9f3+m92h7Bn5Nq1arpjTfesCuY23rxxRfl7e1txL/88ku2fa1Wq9auXWtqmzlzpqpXr57jGi1bttTLL79saluxYkW2H3JYvny5qbDcuXPnXIunfn5+mj9/vuko/ejoaO3YsSPHcfc6Ly8vp45b79ixoxo1amTE58+ftytM/9UHH3xgiseNG+fwQxx/1aJFC4WGhjqx6z9FR0dr69atRtysWTPNnDkzx1MT/vDaa6+pbt26Rrxy5cocT4/o3Lmzhg4dasRJSUkKDQ1VSkqK0TZ37lz99ttvRhwSEuLySQAAAAAAcDdRnAcAAAAAFGj16tXThg0bNGDAgFyL2ZJ07do1ff3113rxxRfVvXt3bdmyJdcxq1evNhWje/XqpRYtWuRp3zkZOnSo6Wn17AQEBKhZs2ZGfOnSJV29etVh32+++cY4Nlz6vdDavn17p/YzePBg04cLzpw5o127dtn1S0tLM32IQZLGjh3r1BqVKlXSE088YWr77LPPnBp7r/rb3/6mkJAQp/rafi9s73f/w7lz57Rz504jDg4O1sCBA51a4+mnn3bpXvbIyEhTPHbsWHl6OverpGLFiplOdoiPj8/1vvtXXnnF9O/q8OHDmj59uiTp22+/1dKlS43XfH19FRERkW/XVgAAAADAnUBxHgAAAABQ4JUtW1azZs3Sli1bFBYWpoYNGzpVRIyJidHo0aM1a9asHI+73759uym2LSLnt0cffdTpvrbF3+yK87bF9J49ezq9hpeXl3r06JHjfJK0b98+09PRjRs3Vo0aNZxep0+fPqY4KirK6bH3onbt2jndt2bNmqY4Pj7eYT/br7uj4/Kz4+3tra5duzq9p59//tn4c3BwsFq1auX0WEl68MEHTfFfP1TgiJeXlxYsWKCgoCCj7bPPPtM777yjCRMmmPrOmjXL6Q8+AAAAAMC9IvdHCgAAAAAAKCAqVaqk559/Xs8//7ySkpK0e/duHThwQIcOHdLevXt18eJFh+MiIyPl5+fn8Clvq9Wqo0ePGrGvr68aN27stvfg6+urihUrOt2/dOnSpjgpKclhv/3795vi5s2bu7SvZs2aafny5UYcHR2d6xp/farfGXXq1JHFYpHVapX0+13lSUlJKlWqlEvz3Ctq1arldN/b/T7ef//9Lu2pSZMmWrlyZa79zpw5Y7rb/b777lNsbKxLa9leG3H27Nlcx5QrV07z58/XkCFDlJGRIUlatGiRqc/TTz+t7t27u7QXAAAAALgXUJwHAAAAABRKpUqVUtu2bdW2bVujLSYmRps2bdJHH32kK1eumPovXrxYPXv2tCuoXr161XSHeo0aNZx+Uvl22BZpc2N7lH96errDfrZP1Od217wt2ye7HT2hb/u0t6treHh4qHr16qYC9NWrVwtscd6V7+Xtfh+rVavm0p6cPcngwoULpnjXrl3q0KGDS2vZSkxMdKpfq1atNGbMGM2dO9futaZNm+qf//xnnvYBAAAAAHcLx9oDAAAAAIqMatWqadSoUfrmm2/sjvfOzMzUihUr7MbYFhT9/f3duEM5fae3q65fv2782cvLSyVLlnRpvG2B/Nq1a3Z9bNtup6juzDoFhYeHR77Pafv1sFgsLo13tr+zhXRX3Lhxw+m+w4cPtztBwtvbW/Pnz5e3t3d+bw0AAAAA7giK8wAAAACAIsfPz0/h4eFq2LChqX3btm25jnVHwfVOy4/34GiOv54w4M518Cd3fX1sj6S/0/71r3/ZPb1/69Ytbdiw4e5sCAAAAADyAcfaAwAAAACKJC8vLw0ePNh0RPb58+eVkpKiEiVKGG1lypQxjSuoT3L7+/sbd4jfunXL7n3mxvYOdEcnCAQEBOQ4Jr/WKcqcvZs+O1ar1al+tn/vH3/8cc2YMcOltW7X9u3bFRER4fC1iIgINWvWTA8//PAd2QsAAAAA5CeenAcAAAAAFFn169e3a7MtvgcGBpqeTj516pQyMjLcvrf8FhgYaIpPnz7t0vhTp07lOJ8klS1bNk9rZGVlKSYmJsc5izrbr7vt1ys3tt9HZ9dxdlxexcXFady4ccrMzDTaOnbsaPw5MzNTYWFhiouLuyP7AQAAAID8RHEeAAAAAFBkFStWzK7N9s5zPz8/1atXz4iTk5O1f/9+t+8tvzVq1MgUR0VFuTR+9+7dprhx48a5rmE7JjfHjh0zPQlevXp1npy3Yfs13rt3r0vj9+3b51S/2rVrm/4t7Nmzx+mn7m9Xenq6xowZo6tXrxpt/fr108KFC9W3b1+jLT4+XmPGjFF6erpb9wMAAAAA+Y3iPAAAAACgyDp+/LgpLlWqlHx9fe362R6hvWrVKrfuyx1atGhhir/44gunx2ZkZOjLL7/McT7p94K9j4+PEe/bt8+lp+c///xzU9y8eXOnxxYVtl/3zZs3O32Sw61bt/TVV1851bdYsWKmv/dpaWl235/8NmfOHNOHRurWraupU6dKkqZNm6Y6deoYr0VFRWnOnDlu3Q8AAAAA5DeK8wAAAACAAslqtbp8pLetNWvWmOKHHnrIYb+BAweanrLfuHGj9uzZk6e177S//e1v8vPzM+KoqCht3brVqbGRkZG6dOmSEVetWtVhcb548eLq2rWrqW3BggVOrXHx4kV9/PHHpra/Pi2N31WpUkUPPPCAEV++fFmffPKJU2MjIyMVHx/v9FqDBg0yxQsXLjT9PchPX3/9tVasWGHEFotFERERKlGihCSpRIkSioiIkMViMfqsWLFCX3/9tVv2AwAAAADuQHEeAAAAAFAgJSYmqmvXrho/fryOHTvm8viIiAht27bN1NajRw+Hfe+77z717NnTiNPT0xUaGqojR444vd7ly5dd3mN+slgs+vvf/25qmzRpks6cOZPjuF27dtkV2IcMGSJPT8e/UhgyZIg8PDyM+KuvvrIruttKTk7WmDFjlJycbLQ1bNhQrVq1ynFcUTV48GBTPG/ePEVHR+c4JioqSu+++65L6zz44INq06aNEV+9elXPPfecLl686NI8Vqs1x5MaTp8+rYkTJ5raZs+erWrVqpnaqlevrjfeeMPUNnHiRJdOZwAAAACAu4niPAAAAACgwMrIyNDnn3+uHj16qH///vrwww917NgxZWVlZdt/+/bteuaZZ/Tee++ZXmvVqpW6dOmS7VqTJk0yFQvj4uL0xBNP6L333sv2aWSr1aovv/xSw4YNU1hY2G28w/wVGhqqKlWqGPHly5f15JNP6t///rfd0eipqamKjIzU8OHDdfPmTaO9WbNmGjhwYLZrNGjQQEOHDjW1zZgxQ7NmzVJCQoJd/927d+vJJ5803U/v4+NjV4TFnzp37qx27doZ8Y0bNzR06FCtXr1aaWlppr5paWlauXKl8X0sXbq0S2vNnj1bFSpUMOJDhw6pV69eWrJkSY5P4VutVn333XeaOHGi2rZtq/nz5zvsl5KSotDQUNN99s8++6w6derksH+XLl30zDPPmNYJDQ1VSkqKS+8LAAAAAO4Gr7u9AQAAAAAA8sP+/fu1f/9+Sb/fHR8SEqIyZcqoVKlSSk1N1eXLl3X06FFTEfAPtWrV0rx583Kc39/fX4sWLdKwYcOMJ4eTk5MVERGhhQsXqm7duqpYsaL8/PxktVp19uxZnTp1yih63wtPgVssFi1YsEDPPvusrl+/Lun3An1YWJhmzZqlhg0bqnTp0kpISNCePXt048YN0/jKlStr3rx5piP+HRk7dqwOHjyoX375RZKUlZWlyMhIffLJJ2rSpIkqVKig1NRUHT9+3O5qAk9PT02dOlX169fPx3de+MyaNUsDBw7UuXPnJElJSUmaMmWKwsPD1aRJEwUEBCgxMVF79+5VUlKSJMnb21uTJk3S+PHjnV6nXLly+r//+z+NGDHCONL+2rVrCg8P19y5cxUSEqKqVavKYrEoLS1NSUlJOnPmjGJjY00fkgkICHA4/7Rp00wnULRo0ULjxo3LcU+vvvqq9u3bZ3yg48iRI5o2bZpmz57t9PsCAAAAgLuB4jwAAAAAoEAqWbKkKlWqpPPnz9u9lpSU5PSd8D179tTEiRNVtmzZXPvWqlVLn376qcaMGaOdO3ca7ZmZmTp06JAOHTrk9P7vlsaNG+uTTz7RqFGjTEfax8fH68cff8x2XJMmTbRo0SIFBwfnuoaPj4+WLFmiyZMna8OGDUZ7enq6oqKish1nsVj01ltvqWPHjs69mSKsXLlyioyM1LPPPqtTp04Z7devX9dPP/1k19/Hx0dz5sxRo0aNXF6rXr162rBhg8aPH2+aOysrS8ePH9fx48dzncPf39+ubc2aNVq/fr0RBwUFaf78+fLyyvnXVd7e3lqwYIH69u1rPL2/fv16tWjRQgMGDHD2bQEAAADAHcex9gAAAACAAikwMFDff/+91q9fr9DQULVp00YWi8WpsWXKlNETTzyhtWvXKjw83KnC/B+Cg4O1cuVK/etf/1KrVq1yLSRWqVJFQ4YM0bRp05xew91q1aqlf//735o4caLdvd626tWrp7ffflurV692qjD/Bx8fH7311ltauXKl2rRpI29v72z7li1bVkOGDNGWLVsozLugUqVK2rhxo0aPHq0yZco47OPt7a3OnTvrs88+y/HahtwEBgZq6dKlWrlypTp27ChfX99cx1SpUkUDBgzQkiVLtG7dOtNrBw8e1KxZs4y4WLFimjt3rsqXL+/UfipUqKDw8HB5ev75q62ZM2fq4MGDTr4jAAAAALjzPLKyu4gPAAAAAIACJjMzU7GxsTp9+rQuXLggq9WqmzdvqmTJkrJYLAoKClLdunVVuXLlfFvTarUqKipKcXFxSkxMVGZmpiwWiypWrKg6deqY7ni/V505c0b79+/X1atXdePGDZUqVUpBQUFq2rSp08XS3FitVu3atUtxcXFKSEiQj4+PypQpo5CQEDVq1EgeHh75sk5RlZ6erl27dikmJkYJCQny9/dX+fLl1aJFC5fvmXd2vf379ysmJkaJiYm6ceOG8e+satWqCgkJcenDHAAAAABQFFCcBwAAAAAAAAAAAADAzTjWHgAAAAAAAAAAAAAAN6M4DwAAAAAAAAAAAACAm1GcBwAAAAAAAAAAAADAzSjOAwAAAAAAAAAAAADgZhTnAQAAAAAAAAAAAABwM4rzAAAAAAAAAAAAAAC4GcV5AAAAAAAAAAAAAADcjOI8AAAAAAAAAAAAAABuRnEeAAAAAAAAAAAAAAA3ozgPAAAAAAAAAAAAAICbUZwHAAAAAAAAAAAAAMDNKM4DAAAAAAAAAAAAAOBmFOcBAAAAAAAAAAAAAHAzivMAAAAAAAAAAAAAALgZxXkAAAAAAAAAAAAAANyM4jwAAAAAAAAAAAAAAG5GcR4AAAAAAAAAAAAAADejOA8AAAAAAAAAAAAAgJtRnAcAAAAAAAAAAAAAwM0ozgMAAAAAAAAAAAAA4GYU5wEAAAAAAAAAAAAAcDOK8wAAAAAAAAAAAAAAuBnFeQAAAAAAAAAAAAAA3IziPAAAAAAAAAAAAAAAbkZxHgAAAAAAAAAAAAAAN6M4DwAAAAAAAAAAAACAm/1/7S4Zz31/WoEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 611, "width": 1011 } }, "output_type": "display_data" } ], "source": [ "group_counts = data['School ID'].value_counts()\n", "\n", "# Create a bar plot\n", "plt.figure(figsize=(10, 6))\n", "plt.bar(group_counts.index, group_counts.values)\n", "\n", "# Add labels and title\n", "plt.xlabel('School Index')\n", "plt.ylabel('Number of Students')\n", "plt.title('Number of Students in Each School')\n", "\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It can be observed that there are a few schools which has a lot lesser no of students compared to other schools.\n", "\n", "Lets also plot the distribution of student's performance scores for first 4 schools, to help us get a glimpse of how the data looks like:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/ht/b4r2nlz93qv31tp71vbdb5hm0000gn/T/ipykernel_30691/1436856505.py:14: UserWarning: The figure layout has changed to tight\n", " plt.tight_layout()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7sAAAYpCAYAAAAn1XibAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5hU5fkw4GeAXXoXUUHBAqKRGkWNHewmYokiImqMBWtsscWYaDT6S2yxYO8xalTsvaBGg1gAEVGxg0hTWHpd5vuDjwmzBbbM7syw931dXu45c8ozvHPOzPM+57wnkUwmkwEAAAAAAAAAeaRetgMAAAAAAAAAgMpS7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3GmQ7AMi2WbNmxfjx42P69Okxb968WLx4cTRu3DiaNm0a7du3j44dO8Ymm2wSBQUF2Q41zahRo+Loo49OTfft2zceeOCBLEaUv2688ca46aabUtOnnXZanH766VmMiHwyatSoePbZZ2Ps2LExY8aMmDdvXhQXF6dev/LKK+OQQw7JYoRATejXr19MmTIlNf3aa69Fx44dsxhR7hgyZEi89957qen7778/tt9++3KXv+CCC+KJJ55ITTtvlq2y/64AlSEvJpt58bx58+KLL76Ib7/9NubMmROLFy+OFi1aRKtWrWLLLbeMzTffPBKJRK3EQtXIi6FukheXT15cM+TFlEexmzpp1qxZMXz48Hj88cfj66+/XuvyhYWF0a1bt+jVq1fssssu0bdv32jUqFEtRMq6bNmyZTFx4sQYN25cfPzxx/Hxxx/Hl19+GStWrEgtk63OmpIdHeWpX79+NG/ePJo3bx6dO3eOnj17xm677RY9evSohSiza86cOfH73/8+3nzzzWyHAnVKyWS6LPXr14/CwsJo2LBhtGnTJtq1axedO3eOLl26RJ8+faJbt25Rv379WooYAHKTvJhsWbZsWYwcOTLeeuutGDVqVEycOHGNy7ds2TJ++ctfxlFHHRWbbbZZLUUpL64IeTFkh7wYIJ1iN3XO8OHD48orr4y5c+dWeJ2lS5fGuHHjYty4cXH//fdH79694+GHH67BKFlXffXVV/HQQw/FuHHj4tNPP42lS5dmO6RqKS4ujqKioigqKorJkyfHf/7zn7jpppuie/fucf7558d2222X7RBrxIoVK+K0005Lu5IQyB3FxcWxaNGiWLRoURQVFcXXX38do0aNSr3eunXr2HvvveOII46IrbfeOouRZsann34ar776amp6q622ij333DOLEbG6uXPnxn333Zeabt68eRx77LHZCwgg5MVkzw033BAPPvhgFBUVVXidOXPmxIMPPhgPP/xwnHDCCXHaaafl1CgD8mJ5MeQiebG8OJfIi6lpit3UKX/961/TTqolFRQURNOmTWPx4sWxePHicpdb/c5bqIyPPvqoTgyr9/HHH8fRRx8dZ5xxRpx88snZDifjnn766VIJ/XbbbRc77LBDtG7dOurVq5ea36tXr1qODlib2bNnxyOPPBKPPPJI7LbbbnHRRRdF586dsx1WlX366adpdx0dfPDBkvocMnfu3LT26dChg6QeyCp5Mdn09ttvr7HQveou6fnz58fy5cvTXisuLo5bb701xo8fH7fccksUFhbWcLTVIy+WF0MukxdTm+TF1DTFbuqMO++8s1RC36BBgzjggANiv/32i2222SbatWuXem3p0qXx1Vdfxfjx4+Pdd9+NESNGxIIFC2o7bMgJrVq1ijPPPLPU/FVXsH/yyScxcuTIWLRoUeq1FStWxPXXXx8tW7aMI488shajrXmPPfZY2vTJJ59c5r8PUPN233332H333UvNX7hwYcydOzfmzZsX33zzTYwbNy7mz59fark333wz3n333bjkkkvi17/+dS1EDADZIy8m12ywwQaxzz77RN++faNXr17Rpk2bqFevXiSTyfj888/j+eefjwceeCAWLlyYWuftt9+OCy+8MK655ppajVVenE5eDLlDXgzUdYrd1AlTp04t9ZylTTbZJIYNGxZdunQpc53CwsLYaqutYquttorDDjsslixZEiNGjIj77rvPFexkTJs2baJ79+6p/x577LF45ZVXsh1WKU2bNo1BgwatcZmffvoprrjiinjuuefS5l955ZXRr1+/2GCDDWoyxFqzfPnyGDduXGq6sLAwTjjhhCxGBHXbNttss9bzU8TKjsbPP/88Hn744XjqqafSOiGXLFkSf/jDH2L27NkVPp5ff/31Kse8rqsLI5hkg39XoLrkxeSSnXfeOYYMGRK77rpr2h3AqyQSiejWrVt069YtDjnkkBg6dGh88803qdefffbZOPTQQ+MXv/hFrcUsL/4feTHkFnlx7pG/1Qz/rpSn9K9JWAc99NBDaV/eTZo0ibvvvrvchL4sDRs2jH333TceeuihuPbaa2siTOqAjTbaKH7729/GP/7xj3j99ddj5MiRcfvtt8fpp58eu+++ezRr1izbIVZZ27Zt49prr40BAwakzV+6dGnccccdWYoq877//vtYsmRJarpz587RtGnTLEYEVES9evViq622iksvvTRGjBgR/fv3L7XM1VdfHS+++GIWogOAmicvJhf06tUrHnjggbjrrrti9913L7PQXVLnzp3jzjvvLJUv33bbbTUVZpXJi4FcJi8G1lWK3dQJJa8yO+SQQ2LjjTeu8vY6dOhQ3ZCoo3bYYYc477zzYt99911nP0eXXHJJNG/ePG1eLt6tXlVz585Nm27RokWWIgGqqnXr1nHzzTfHaaedVuq1P/7xjzFr1qwsRAUANUteTC646KKLom/fvpVer2PHjnHMMcekzfvggw9izpw5mQoto+TFQK6TFwPrEsVu1nkrVqyIr7/+Om3etttum6VoYN3XrFmz2H///dPmTZ8+Pb777rssRZRZixcvTpuuyJ0IQO5JJBJx+umnx3777Zc2f+7cuaWGeAWAfCcvZl2w9957p00vX748vvjiiyxFs2byYiAfyIuBdYVndrPOmz17dhQXF6fNy/YVpz/99FOMGzcufvrpp5g9e3Ykk8lo2rRpdOzYMbbccsuMPcNp0aJFMXr06Pjmm29i3rx50axZs2jXrl1su+22sd5662VkHxERkydPjgkTJsRPP/0Uc+fOjebNm0ebNm1iyy23jM022yxj+4mIKCoqirFjx8bMmTNj9uzZUVhYGG3atIlOnTrFNttsE/Xr18/o/qiaXr16xSOPPJI274cffohOnTpVaP3vv/8+Pv300/jpp5+iqKgomjZtGm3bto1u3bpl/DO1yuzZs+Ojjz6KyZMnx/z586OgoCC22GKL2H333dOWSyaTGd/3quedff/99zFr1qxYunRptG7dOtZff/3o3bt3jZ2z5s+fHx999FF8++23MW/evKhXr15stNFG8ctf/rLC20gmk/Hpp5+m2isiYv31149evXpF586d17r+8uXL46OPPoovvvgiioqKonHjxtG+ffvYfvvto3Xr1lV9aylTp06NL7/8MqZMmRLz5s2LFStWRMuWLaN169bRvXv32Gijjaq9j/LMnTs3Pvzww/juu+9i0aJF0aJFi2jfvn307ds3o21aXFwcn3zySUyePDlmz54d8+bNi8aNG0erVq1i8803jy233DIKCwurtY9sHJO15fLLL49Ro0alXbU+fPjwOPPMM2v098JPP/0Un332WUyePDnmzZsXy5Yti8aNG0fz5s2jQ4cO0blz59hwww1rbP9VsWTJkvjoo4/i66+/Tt1F1bZt2xgwYEAUFBTU6L4nTpwYEyZMiJkzZ0bEyvNMly5dYuutt67R/a6Lli5dGmPGjImpU6fGrFmzYsWKFdGmTZto37599OnTJxo3blwj+62tcyJQNnmxvHhdsMkmm5Sa9+OPP2YhkoqRF1eOvFheXB3y4uqRF1ecvHjdIC9e9yh2s85LJBKl5k2fPr3W41i4cGE8+OCD8cwzz8TEiRPXmBh06tQp9thjjzjssMNiiy22qPS+fvzxx7jxxhvjySefLHW1bcTKf5O+ffvGueeeGz169Kj09iNWXsX7wAMPxOOPPx7ffPNNuct17NgxBgwYEMcdd1y1nkf94osvxr333hsfffRRrFixosxlWrVqFf369YtTTz01OnbsWOV9UX1ldRrNnj17jevMnz8/7r333njmmWfi22+/LXe5jh07xsCBA+Poo4+ORo0aVSie4cOHx4UXXpiaPvjgg+Oqq66KiIgxY8bETTfdFP/9739Lfba6desWW2yxRZnPMFrlvffeiy233LLM1+6///7Yfvvty13322+/jZtvvjneeOONUsPArVK/fv3o3bt3HHfccWuMo6RRo0bF0UcfnZru27dvPPDAAxER8eWXX8aNN94Yr732WixbtixtvebNm6cl9UOGDIn33nuv1HtasWJFPPzww3HnnXfGlClTyoxhu+22i4suuqjMH90LFiyIO++8M/71r39FUVFRme97v/32i/POOy/at29f4fe9aNGiGDFiRLz++usxatSomDFjxhqX79ChQxxxxBExaNCgUsMMrsmaPlOTJk2K66+/Pl5++eVS/74RK99bv3794uyzz65WQvzRRx/FXXfdFf/9739j3rx55S7XqFGj2HbbbeNXv/pV7LffftGwYcMKbb8mj8lc0qxZsxg4cGDccsstqXmLFi2Kl156KQ477LBy1+vXr1/aZ/+1115b63dPMpmMp556Kh566KEYO3bsWmNr165dbL/99rH//vuXOv5LfgZX98QTT8QTTzxR7nZXPx+s8v3336fto0OHDqnhbqdOnRo33XRTPPfcc2nPel1l7733TkvqyztvVFYymYwnnngibrvttnI/g5tsskkcc8wxceSRR1b4jqLqxrem43+Vkv+eq5syZUq53xurfP755xmPe/z48XHLLbfEO++8U2Y7RkQUFhbG9ttvH0OHDq3UHZ+5cE4E1kxeLC9eF5T1PVLWZztXyItXkhfLi+XFuU9evJK8WF4cIS/OV8aYYZ3XqlWraNAg/bqOl156qVZjePLJJ6Nfv35x9dVXx+eff77WK2C/++67uPfee+OAAw6o9L5GjhwZBxxwQDz88MNlJvQRK78kR40aFUcccUQMHz680vt47733Yp999omrr756jQl9xMovtZtvvjn22muvGDFiRKX3NW3atBg4cGD87ne/izFjxpSb0EesvLp9+PDhse+++8awYcMqvS8yp6zP+Jo6IZ588sno379/3HjjjWtMHiJWfqauueaa2HfffWP8+PHVivMf//hHDBo0KN5+++01frYyLZlMxrXXXhsHHHBAPP300+Um9BErr07+4IMP4pRTTokhQ4akrhKvqkceeSQOOuigePHFF8v8cVUR8+bNi+OOOy4uvfTSchP6iIj3338/Bg4cGC+//HLa/C+//DIOPvjgGDZsWJkJfcTK9/3ss8/GoYceGl999VWF4po9e3bsuOOOcdZZZ8Uzzzyz1oQ+YuWP61Wfpw8//LBC+1mTZ599Nn71q1/Fc889V+6/b3FxcbzyyitxyCGHxH/+859K72PWrFkxdOjQOPzww+Oll15aY0IfsbIT9u23347zzz8/7rjjjgrtI1vHZLYMGjSo1DnqzTffzOg+Zs2aFYMGDYrzzz+/Qgl9RMTMmTPj2WefjfPPPz+jsVTGa6+9Fvvvv3889thj5SaCNWHRokVx8sknx4UXXrjGz+CkSZPiL3/5SwwaNKja58d11dKlS+Oiiy6KX//61/Hqq6+usR2XLl0a//nPf2Lw4MFxxhlnxMKFC6u179o4JwIVIy8uTV6cfyZNmlRqXibvzs80efGayYvlxfLi3CIvLp+8OP/Ji9d9it2s8+rVqxc/+9nP0ua98cYbce+999b4vpPJZPzf//1fnH/++eVevduoUaNo2bJlRp5vNHLkyDjxxBPTfiQnEolo2bJlmUP1FBcXx0UXXRQjR46s8D5eeuml+O1vfxvTpk0r9dqqfZX1XmbNmhWnnnpqPProoxXe11dffRVHHHFEuT9+mjVrVubwMMuWLYt//OMfcdFFF9Vqosb/lDWUXKtWrUrNSyaTcd1118X5559f7lXMrVq1KvPzO3Xq1BgyZEilPr+ru+GGG2LYsGFpHRD16tWLli1b1uiwf8uXL49zzjknbrvttli+fHmp1wsLC8u92+O9996LgQMHltnJUxGPP/54XHLJJWk/rBKJRLRo0aJU52d5li5dGieddFKpf/emTZuWOcTP0qVL49xzz41PP/00IlZ2Wg4ZMiTtWXWrYijreJ45c2accMIJFUomli9fXu5yBQUF0apVq2jSpEmZr//4449xzDHHxKhRo9a6n/I8+eSTce6556Z1qK76TJX13hYtWhSnnHJKhTstIiI+++yz+PWvf11uJ2m9evWiVatW5V5JvrZO5Wwek9nUvn372HTTTdPmVTTxroilS5fGMcccE2PGjCnz9caNG0fr1q3L/XxmyzvvvFNmYte8efNqDwG4JslkMs4666xSn/PCwsJo2rRpmeuMHTs2jjnmmLRh91h5J8rxxx8fjz/+eJnHf6NGjcr93L300ksxZMiQKv+b1sY5Eag4ebG8eF3wyiuvpE0XFBSs9a6wbJIXl09eLC9eRV6cO+TFZZMX5z95cd1gGHPqhL333js++uijtHlXXnllvPLKK3HUUUfFbrvtViNfpDfddFPcfffdafPq168fAwYMiH333Td+/vOfp368J5PJmDRpUowbNy5ee+21ePPNNyt11dDMmTPjzDPPjKVLl0ZBQUEceuihMWDAgOjevXvqxPnll1/Gww8/HA8++GAq2U0mk/HHP/4xXnrppbUmMp9//nmce+65sXTp0rT5Bx54YAwcODB69eoVDRo0SD0n57HHHotHH300ta/i4uL405/+FJtuuulahwBZuHBhnHLKKTF16tS0+auGrdp5552jSZMmkUwm4/vvv4/nnnsubr/99liwYEFq2ccffzw22WSTGDp0aMX+EcmYsn4Ml/UMqLvuuituvfXWtHkbb7xxHHXUUbHLLrvEZpttlrqq9Pvvv49XX3017rzzztSzaRYuXBhnnnlmPPXUU5V6pt+4cePiySefjIiIhg0bxuDBg+OXv/xlbLXVVlGvXr0oLi6Or7/+Oj744INo1apV/PnPf06t++2336Z1Cnbu3DmOPfbYMvdT1rO5brjhhnjuuefS5rVs2TJOPPHE2HfffVPDPc2fPz/eeuutuPPOO+OTTz5JLTt58uQ49dRT4/HHH6/Uj+offvghLrvssohYeR465JBD4qCDDoqePXtGQUFBrFixIr7//vt47bXX1ridG264IcaNGxcREd27d48TTjghdtppp9S5bMqUKfHvf/877rzzzlSnxZIlS+Ivf/lL3HvvvXHaaafFrFmzIpFIxP777x8DBw6M3r17p97LhAkT4tZbb02702jKlClx6623xllnnVWh91pQUBB9+/aNXXfdNbbZZpvo2rVr2nNvFi5cGBMmTIgXXnghHn300ViyZElErOwQPOecc+KZZ56p9HPRJk6cGM8991wkk8lo3LhxHHXUUbH//vtHt27dol69epFMJuOTTz6Je+65J5599tnUekuXLo0//elP8c9//nOt+5gxY0Ycf/zxqc//Kp06dYohQ4bEzjvvHJtssknqXD5//vz49NNPY9SoUfHSSy/FxIkT17qPbB2TuaBXr17x9ddfp6ZnzpwZs2bNijZt2lR72/fcc0+pf/+99torDjvssOjZs2dap+eyZcvi22+/jU8//TTeeuutePPNN8tMxnr16pU6N40dOzZ1Tlv12kEHHVRuPOuvv/5aY16wYEGcd955qeN4n332iYEDB8a2224bDRs2jGQyGTNmzIgXXngh488le+SRR1K/25o3bx4nnnhiHHDAAdGhQ4eIWHkXzYgRI+LWW29NSwC/+OKLSt2pUZNW/+4oKiqK66+/Pu21M888s1bi+NOf/lSqs3KDDTaIoUOHxp577hnt2rWLiJV3AI0YMSJuueWWtI7j8ePHx+9///u48847KzVMbG2cE4HKkxfLi/PZ4sWLSw1Hu/pnJxfJi//3WknyYnmxvDg3yYvTyYurR14sL65Nit3UCYMGDYp777231A+hDz74ID744IMoLCyMn/3sZ9GzZ8/o2bNndO/ePTbeeONq7fPtt9+Om2++OW3exhtvHMOGDYuuXbuWWj6RSESnTp2iU6dO8atf/SrmzJlTqRPaqmHT1ltvvbjlllvKfObYFltsERdffHFsvfXWac+PmDx5crzxxhtrfO7RqqtuV0/oCwoK4h//+Eep9erXrx89evSIHj16xH777Rcnn3xy6qrS4uLi+P3vfx/PPffcGjtSrrrqqlLDs5x00klx5plnpl0hn0gkYuONN46hQ4fGgAED4thjj01b78Ybb4xdd921zGcjUTPmz58fL7zwQtq89u3bR6dOndLmjR07Nq677rq0eYMHD44LLrigzGS1Y8eOceyxx8aBBx4Yp556aowePToiVv5Y+tOf/hS33XZbhWNc9SNwgw02iLvvvjs233zztNfr168fXbp0iS5dukTEynPIKqNGjUpL6tdff/2019dk9OjRpX5sbrnllnH33XeXGn6vWbNmsf/++8c+++wTV1xxRTz44IOp1yZOnBjXXnttXHDBBRXab8TKBCxi5Q/kW2+9tVTHWr169WKTTTaJ3/zmN2vczqqE/rjjjovzzjuv1I+8Dh06xFlnnRWbbbZZnHfeean5H374YZx99tkxceLEaNiwYVxzzTWx1157ldr+1ltvHTfccENcfPHFaXe8/Pvf/47TTjttjclDYWFhnH766TFo0KBo27Ztucs1adIktt1229h2221jyJAhccIJJ6R+xM6cOTMefPDBOO2009b471DSqo6Xzp07xx133BGbbLJJ2uuJRCK22WabuOaaa6Jz585x0003pV57//3347PPPotu3bqVu/1kMhlnnnlmqe+xoUOHxumnn17mHQjNmjWL7bbbLrbbbrs47bTT4t13311jZ3E2j8lcUNZdQVOmTMlIUr96wh0Rcf7558dxxx1X5rIFBQWp88+BBx4YixYtKnUXU0TEZpttlnqOU8OGDdP2semmm1b4vFSeVXcwFBQUxDXXXBP77LNP2uuJRCLat29fbqdmdaxK6Dt37hz33XdfqQ6i5s2bx4EHHhj77rtvnHfeeWnfOW+99VY89dRTMWDAgIzHVRnNmjVLtcH333+fltQ3bdq02u1TEc8991xawhwRsdNOO8UNN9xQqjDQunXrOOSQQ2L//fePc889N+0z9/bbb8c///nPGDJkSIX3XdPnRKBq5MUryYvz0x133FFqOOaBAwdmKZq1kxeXT14sL5YX5y55cTp5cfXIi+XFtckw5tQJTZs2jRtvvLHc4WuWLl0aY8aMiXvvvTfOOuus2HPPPWPnnXeOs846Kx599NG1PvelLFdffXXaFWft27ePhx9+uMyEviwtW7aMU089tVL7LCgoiGHDhpWZ0K/ukEMOid133z1t3osvvrjGdV5++eX44osv0uZddtlla+wIiIjYcccd4+qrr06b98MPP5S6Int106dPL/XMtIMPPjjOPvvsNQ5rt+GGG8Y999yT9kW1fPnyUldjUrMuu+yyUsfMnnvuWWq5v/3tb2nDlQ0cODAuueSStV6V3aZNm7jllltSVzJGrByC8fPPP69UnAUFBXHbbbeVSuhr0i233JI2hGDbtm3jnnvuWeNz5urXrx9//OMfSyXA//rXv6o0hM4111yz1jtI1mb//feP888/f41XMw4YMCC23377tHmrfiRefPHFZSb0q7vggguiefPmqelZs2bF+++/v8Z1WrZsGaeddtoaE/qSOnfuHLfddlva5+6hhx6q0lCPzZs3jzvvvLPUj9eSTj311FIJ5NrOwa+++mqpZ6edeeaZcdZZZ1V4qL0ddtgh+vXrV+7r2T4ms231uxxWKWvoycpasmRJ2pXx66+/fqUS4caNG8eBBx5Y7Tiq6g9/+EOphL42NGnSJO6888413glRWFgYf//730v97vG9v1LJ57RuscUWcfPNN6/xDrhGjRrFtddeW+rf9Pbbb6/08yxr8pwIVI28OJ28OH+MHz++VMGoe/fusd9++2UporWTF5dPXiwvjpAX5yp5cdnkxflLXlx3KHZTZ/Tu3TsefvjhModPKsvMmTPj+eefj4svvjh23nnnuPDCC8t8HldZ3nzzzdRzeFa58sor1/jDPRN+/etfR8+ePSu0bMkroMePH7/G5UteTd+3b9845JBDKrSvPffcs1RSd//995e7/EMPPZT2xdGyZcsKX6m70UYbxRlnnJE279VXXy017BuZN2vWrDjnnHPiqaeeSptfUFAQJ5xwQtq8MWPGpCUo7du3r9TV2K1atSp1hXFlnnsXEXHEEUfU6tVx3333XfznP/9Jm3fuuedWKAFNJBLxxz/+Me3ZX0uWLKn0e+7Xr1/stttulVqnpIKCgrjooosqtGxZichWW20Vhx9++FrXbdasWakEdG3nqarabLPN0joof/zxx/jyyy8rvZ2TTjqpQnc/1atXLw477LC0eWt7b7fffnva9M9//vM46aSTKh1jeXLhmMy2spL6ijwTb21KPuOtQ4cOGXkeaW3Yaqut4ogjjsjKvk844YQKHU8FBQVxySWXpM37+uuv4913362p0PLCyJEjS53HLrnkkjKfIVlSYWFhXHrppWkdtzNmzEgbRrMiavKcCFSdvDidvDj3FRUVxZlnnpn2b1FQUBCXX355pYYSrS3y4jWTF68kL5YX5yp5cWny4vwlL65b8uOMAhmy1VZbxbPPPht/+tOfKpzcR6x8NtTw4cNj3333rdCPlJInvR49esROO+1U2XArrTJfvH369Emb/vbbb8u9YnPevHkxZsyYtHlHHXVUpWI7+uijS+1v9WdfrO6tt95Km/7Vr36V9tyWtfn1r3+dNhRccXFxvP322xUPllIWLFgQDz30UKn/Hnzwwbj55pvjlFNOiX79+pUaFiZi5ZXIG264Ydq8kssdeuihlX4+4N5775125e57771XqfUrklhm0ltvvZV2V0urVq3il7/8ZYXXb9++fey7775p8958881KxZCJ97zHHnuknmWzNt27dy81r+QPt8qsv/pVwJnWq1evtOmSz7Ncm7J+lK5JyXPwmt7btGnTUsPkrXLSSSdlNDHMhWMy28p6vyWfxVkVq9+JEbGyrSvz7NFs+vWvf52VTuT69etX6nzVvXv3UueLN954I8NR5ZeS3w9du3YtdVfRmmy99dax3XbbrXGba1KT50Sg+uTF/yMvzm3Lli2L3/3udzF58uS0+eecc05WhvWUF1efvHglefFK8uLcIy8uTV6cv+TFdYtndlPnFBQUxJFHHhlHHnlkfPTRR/HGG2/Ee++9Fx9//HEsWbJkjesuWrQoLr744pgxY8Yah1Ir+UOmNoZZadGiRZnPVSlPq1atonnz5qlhtVasWBELFiwo9eMjYuXzalZP+AsKCmKPPfaoVHx9+/aN1q1bx+zZs1PzRo8eXWoIj4ULF5Ya4mdtwzqV1LRp09hll13SOlfGjBlTqS8X0hUVFcWf//znSq1Tr169OPXUU8vsACp5jOy8886VjqlZs2bRqVOn1HPGvvjii1iwYEE0bdp0reu2bt26wkMnZkrJjrHdd999rcNglbTPPvukDXU4fvz4WLp0aYW2k0gkSv1Aq4rKDPW20UYblZr385//vMLrl+wMmjt3boXXXd2MGTPiq6++irlz58aCBQti6dKlaR0sEVHqrqPK3vXStWvXSnU+lryqc03Dgpa8ErdVq1ax6667Viq+tcn2MZkLFixYUGpeZY/RsjRp0iS6dOmSGvJ0zpw5cfbZZ8cVV1xRqaEFs6EySWAm9ejRo9J3/fXv3z8+/vjj1HRlO+bWNSW/cyr7Wypi5XfO6ueGkttck5o8JwKZIS9eSV6cu5LJZPzhD38o9Vv4gAMOWOvzlGuKvLj65MUryYtXkhfnHnlxafLi/CUvrlsUu6nTevbsmRrebNmyZfHll1/G+PHjY/To0fHuu+/GDz/8UOZ6N954Y/zsZz8r9XyviJUnoZJXHffu3TvjsZe00UYbVfoqs6ZNm6adNOfPn19mUl8yye7atWulf+gkEon42c9+lnYleVnPrfnyyy/Tno2zar3K2mabbdKS+nx7Rk6++9nPfhbnnXde7LDDDqVeW7hwYann3I0ePTomTpxY6f2sfnXpihUr4qeffqpQAlHbCX1E6c/gNttsU+ltlFxnyZIl8d1330WXLl3Wum6HDh3W+Dyailr9+VNrU9YVwZVZv2RblpV0lee9996LJ598Ml5//fW0zsSKqmwHQmXeV0Tp9zZ//vxyl50wYULadO/evTN6VXEuHJO5oKwkoiJDW1XEEUccEX/5y19S0yNGjIg99tgj9tprr+jXr19sv/32NT6ka2UVFBTEZpttlpV9V+V7f+utt06b/uyzzzIVTl6qie+cyZMnx8KFCyt0d0tNnhOBzJMXy4tz0VVXXVVqKPCddtoprrrqqixFVHny4tLkxZVfX168kry4dsiL08mL85u8uG5R7Ib/r6CgILbaaqvYaqut4rDDDotkMhkffvhh3HLLLaWG+komk/H3v/89dtttt1I/rGbNmlVq2yWv0q4JZSXja1O/fv206eLi4jKXmzNnTtp0ZU/Uq3Ts2HGN2y1rXsuWLav03iqyL6qvXr160axZs2jRokV07tw5evToEbvvvvsan5H3008/lbp6+Oqrr85IPEVFRRU63ipzVV2mZOI4ateuXTRs2DDtbpuKfrZbtmxZ6f2VpTIdAyXPMZVdv+RwZOUNKbm66dOnxyWXXFLtoZoq04EQUflzcMl/mzW9t5LfKxV51k9l5MIxmQvKOpYqOjTh2gwaNCjefPPNtOFIlyxZEs8++2xqqLxNNtkkevfuHdttt1384he/qPJ3baY0bdq0zGO4NpR198valPz3WrhwYYXv8FnXLF26tNRz9aryeSr5Wypi5XFSkaS+Js+JQM2SF8uLc8FNN90U9957b9q8nj17xo033piT3+3y4oqTF1d+fXnxSvLi2iEvTicvzl/y4rpHsRvKkUgkYtttt4277ror/vnPf6ZdeRax8krr999/P/r27Zs2v6ioqNR2MnHV6NrU5LNDSv7Qqer7KXmCL+sHVMmrRqt65WPJGPMlqc9VHTp0iNdffz0j26rJtli8eHGFlqvsM5cyIZPH0epJfclzTnkydRVxdc81NXmu+uGHH2LIkCHx/fffV3tbJZPctanJ91WyjVu0aJHR7efCMZkLyrriuSrJZVnq168fw4YNixtvvDHuvffeMoeHnTRpUkyaNCl1B1OvXr3iyCOPjF/+8pdZSa6zeedBVc6PZSWRc+fOzbk7A2pDWcd0pv5N58yZU2oozbJk45l2QM2QF/+PvLh2PPDAA3HjjTemzevatWvccccdWb8zUl5cffLizKy/JvLiqsmFYzIXyIvTyYvzl7y47lHshgo46qij4osvvoiHH344bf67775bKqkvyUmtfBX5t8nUv592yB3Lli2rsW1XNhHLJp/tzLvwwgtLJfSbbrpp7LffftGzZ8/o0KFDtGvXLho1ahSFhYVpV8gPHz48LrzwwtoOuUoy3eaOyZVKPsuqffv20aZNm4xtv6CgIM4+++wYPHhwPPXUU/HKK6/EJ598Uu7dY2PHjo2xY8fGvffeG9ddd1107tw5Y7Gsi/Lps5YNVTlv+H4BSpIX1wx58f88/vjjccUVV6TN69SpU9x9990ZuyM3V/gNvlJd+WzXJnlx1TgmV5IX57d8+qxlg7x43abYDRX0m9/8plRS/91335VaruQwUCtWrIj58+dn/IrD2lQyqazq8yJKPvelrH+TkvOquq+S6+Xzv/+6puTnqaCgIMaNG1dqaK51TcuWLWPmzJmp6bKeg1QRJddb1zp9qmrkyJHx7rvvps278MIL49hjj63Q+gsXLqyBqDKj5PdKpq84r6vH5OqmT58e3377bdq8mnquaPv27ePEE0+ME088MebPnx9jxoyJDz/8MEaPHh1jxoxJe75bxMpn0w0ZMiQeffTR2GCDDWokplxTle/+stapqe/+XB9KrKzvhap855T1jEbfOYC8+H/kxZn1wgsvxB//+Me0jvoNNtgg7rnnnowNoZtL6upvcHlxzZIXV11dPSZXJy/OLfLi6pEX1z1152wN1dS5c+dSQ12UNUxSWVe7lZX855OSPyinTJlSpe2UvLK0rC+Gsn68VuWLqCL7IjtKHiPLli2LadOmZSma2pOJ42jmzJmlhnny2V7plVdeSZs++OCDK5zQR0TMnj07wxFlTsljZtKkSTW6/bpyTK7uX//6V6kroHffffca32+zZs1il112iTPPPDPuv//+GDVqVFx//fWlOhRmzJgR11xzTY3Hkyt++OGHSq9T8pzapEmTcp9LVvLK7Mom6VXtlK0thYWFpYYlrcp3TllDX/rOAeTF/yMvzpw333wzfv/736fd2de2bdu45557sv681ppSV3+Dy4trlrw4c9uvK8fk6uTFuUVeXD3y4rpHsRsqoXHjxmucjlj5HIdNNtkkbd6YMWNqNK6a1rVr17TpiRMnlrrCbm2SyWRMmDAhbd6WW25ZarnNN988GjT436ATyWQyPvnkk0rtKyJi/Pjxa90X2dGqVatSz/t5//33sxRN7Sl5HJX8jFZEyXUaNmxoCKf/7/PPP0+bPvDAAyu1/scff5zJcDLqZz/7Wdr02LFjMzo0VV09JleZP39+PPLII2nzmjZtGnvttVetx9KkSZPYb7/94uGHH47Bgwenvfbyyy+X+UyzdVFVvvcr8htjlZLPXVuwYEGl9lXV4kZtqonvnI033jgrz/YEco+8eCV5cWaMGjUqTj/99LQhhFu0aBF33313bLbZZlmMrGbV1d/g8uKaJS+uurp6TK4iL8498uLqkxfXLYrdUEFLly6NWbNmpc0r75klJZ9X9swzz9RYXLWhV69eacP2LFu2LN54441KbeP9998v9e/Xp0+fUss1adKk1Bfxq6++Wql9LVy4MP7zn/+kzaupYXeomh133DFt+oUXXshSJLWn5GfwjTfeqHTn2Msvv5w2vc0220RBQUG1Y1sX/PTTT2nTG264YYXXnT9/fk4nsTvssEPadFFRUbz11lsZ3UddPCZXufjii0vdwXD44YeXumuttp199tlpx/fixYtLDSm3Sv369dOmy3veWb4YN25c/Pjjj5Va57XXXkub7tmzZ7nLlhzGrawrtdeksueL1YsVEbXTPiW/c0re5VMRL7300hq3CdRN8mJ5cSaNGzcuTj755LTCRZMmTeKOO+6Ibt26ZTGy2lEXf4PLi2uWvLh66uIxuYq8OPfIi6tPXly3KHZDBb311lulTsIlrypcZb/99kubHjduXLzzzjs1FltNa968eakE/J///GeltvHAAw+kTW+66aalrvRfZbfddkubfuaZZyr1LJ7HH3887TlD9evXj1122aUS0VLT9tlnn7TpESNGxLhx47IUTe3Ydddd04YIKioqiueee67C68+YMSNefPHFtHm1MZxUvijZuVGZ4ZT+9a9/5fSzydq3b1/qx/Rtt92W0ecj1cVjMiLixhtvLNWB0apVqxg6dGiWIvqfZs2alRrmcdGiRWUuW/KK7Ko+1zNXFBcXx7///e8KL//xxx+XugtlTefHkneJjR49usL7+uijj+Kzzz6r8PIR2Wmfkr+lJk6cGO+9916F1//ss89KdV74zgEi5MXy4syZOHFinHDCCWl3kjVs2DBuueWW6NWrV/YCq0V18Te4vLhmyYurpy4ekxHy4lwlL64+eXHdothNnXD00UfHBx98UOX1Fy9eHNddd13avEQiUe7Jbeedd46tt946bd6FF15Y6auxcslRRx2VNj1q1Kh48sknK7TuiBEjSl15O2TIkHKXP+KII9J+oBcVFcX//d//VWhf06ZNixtuuCFt3l577RUbbLBBhdanduy2227RvXv3tHnnnntutZ4Plcnhq2pCp06dYtddd02bd/XVV5e6s6M8l19+eVri2ahRozjssMMyGmM+K3mMV/Qumy+++CJuvvnmGogos0444YS06Q8//DBuu+22jG2/rh2Ts2fPjlNPPTVuuummtPmJRCKuuuqqUsl0dSxfvrxK682ePbvU+WG99dYrc9mS87/++usq7TOX3HHHHTF58uS1Lrds2bK47LLL0uZ17ty51J0fq+vRo0fa9Jtvvlmh32hLly6NSy+9dK3LldS0adNo1KhRanr+/Pkxffr0Sm+nMnbcccfo0qVL2rzLLrssFi9evNZ1ly1bFn/605/SjuH1118/9t5774zHCdQueXH1yYszY9KkSXHcccelPe+9oKAgbrjhhjV+h69r6tpv8Ah5cU2TF1dPXTsm5cW5T15cPfLiukWxmzph1KhRMXjw4Dj22GPjhRdeqNQQSdOmTYvjjjsuvvzyy7T5BxxwQLRv377c9X7/+9+nDXE2ffr0GDRoUHzxxRcV2u+cOXPilltuqXCcNW2vvfYq9eXwxz/+ca0/nEeNGhVnn3122ryNNtooDj744HLXad++fRxyyCFp8x5//PH4xz/+scYfidOmTYtjjz025s6dm5rXoEGDOOmkk9YYI9lx/vnnpw1h891338WRRx5ZqSsDk8lkvPvuu3HyySdXeli/bBg6dGjaeeHHH3+M3/72t2tM7IuLi+Pyyy8vNWzOkUceGa1bt66xWPNNyWEy77nnnrU+32j8+PHxm9/8pkI/crOtX79+pd7j9ddfH9dff32Fk8ZRo0bF66+/Xu7r6/oxuWLFivjss8/i0ksvjT322KPM+C6++OLYY489MrrfN954I4488sh45ZVXKtxWxcXF8de//jXtzrmOHTtGhw4dylx+yy23TDu3fPvttzFy5MjqBZ5lCxcujOOPPz6mTZtW7jJLly6N8847r9TdFieffHLaHUMlbbvtttG2bdvU9OLFi+Piiy9eY/ssXLgwzjjjjCo9N61evXqlhmJ96KGHKr2dyjr55JPTpr/44os47bTT1njHzpIlS+Kcc86JsWPHps0/6aSTDA8K6wB5cfXJi6tv+vTpceyxx8bMmTNT8+rXrx9///vf6+TdUuv6b/CyyItrjrx47eTF8uJ8Ii+uPnlx3dFg7YvAumPkyJExcuTIaNmyZfTr1y/69OkTvXv3jg4dOkSTJk1Sy82aNSs+/fTTePnll+Opp54qNTxKq1at4rzzzlvjvn7xi1/EKaecknZ13KRJk2LAgAExYMCA2H///aNPnz6pITySyWRMnjw5xo0bF6+99lq88cYbsXDhwlIn5Gxp0KBBXHPNNfHrX/861SmydOnSGDp0aBx00EFx+OGHR48ePaJBgwZRXFwcn376aTz66KPx73//O21IoVVJ7Or/3mW54IILYtSoUWnPYRk2bFi8++678dvf/jZ22mmnaNy4cURETJ48OZ5//vm4/fbbSw2BcsYZZ5S6myDbXnvttZgxY0aZr33zzTdp0zNmzCj3i79p06Zx4IEHZjy+2rLddtvFBRdcEJdffnlq3tdffx2HHHJI7LnnnvGrX/0q+vTpk/bDa9myZTF58uT47LPP4oMPPohXX301dRXggAEDav09VFafPn3ihBNOSLvyeMKECbHffvvFSSedFPvuu29stNFGERGxYMGC+M9//hN33HFHjB8/Pm07Xbt2jbPOOqtWY891Bx10UNx8882p8/XChQtj8ODBccIJJ8SBBx4YG2+8cUSsvJp43Lhx8eSTT8bjjz+e+hHft2/fSg1lVNsSiURce+21cfDBB6d1DN5yyy3x/PPPx9FHHx0777xzbLLJJqnkbv78+fHZZ5/Fu+++Gy+99FJMnDgxTjvttOjXr1+Z+8jXY3L8+PFlnicXLVoUc+fOjXnz5sW3334bH330UbnD+DVu3Dguv/zy+OUvf1kjMX744Yfx4YcfRqtWraJfv36xww47xNZbbx2dOnWKwsLC1HLTp0+PUaNGxb333lsqeRwyZEi5iWrjxo1jxx13TBsa9oQTToh+/frF1ltvHc2bN09L+tdff/3o379/ht9l5vTs2TM++uij+Pbbb+OXv/xlnHTSSXHAAQekzo/z58+PESNGxK233lqq6LLzzjvHQQcdtMbtFxQUxOGHH55WPBkxYkQcddRRcdppp0Xfvn1T7TJlypQYMWJE3HnnnTF16tSIWPmMrjFjxlTqPe2xxx5pifItt9wSH3zwQWy33XbRtm3bUs+XGzRoUKW2X5YDDjggXn/99Xj22WdT8/7zn//EAQccEEOHDo0999wzdTwXFRWl/k1LPgNv5513jsGDB1c7HiB3yIurTl5cfb/5zW9iypQpafO22267KCoqqlKn96abbprXd4Pn62/w6pAX1xx5sby4JHmxvLg88mJ58bpGsZs6ac6cOfHEE0/EE088kZrXsGHDaNKkSSxYsGCNV7i3atUq7r333jVevb7KqaeeGvPmzYv77rsvNa+4uDiGDx8ew4cPj4iVX8SFhYUxb968jD5npiZsueWW8fe//z1+//vfp/6Nkslk6t+yXr160bx585g/f36p57hFrEzoL7300th2223Xuq8mTZrEsGHD4rjjjku7em306NGpZ4g0b948lixZUm57HXrooaWGOMoF9957b4WTh2+//Tb+/Oc/l/lahw4d8rrYHbHyR+qiRYvi+uuvT31miouL46WXXkpdsV1QUBBNmzaNJUuWlPtcnnxyxhlnpDqiVlk1JOH//d//RWFhYTRs2LDc5GPjjTeOm2++OS0RIKJdu3Zx+umnx9/+9rfUvEWLFsUNN9wQN9xwQzRu3DgaNmwYc+bMKXUnzMEHH5zzSX3Eyvd45513xtChQ1PJRcTKK83/8pe/RMTKK2VbtGhR5eMlH4/JN954o8LD85Vlzz33jAsuuCDV8VOTioqK0n4DRKz8vmvYsGEsXLgwlixZUuZ6u+yySxx99NFr3PaJJ54YI0eOTP2WWLZsWVq7ra5v3745ndQPHDgw2rZtG6+//nrMmzcvrr766rj66qujYcOGUVBQUO6zvTbffPO0c8CaDB06NF588cW0i8zGjBkTv/3tb1PH0YIFC2LZsmVp6x166KGx7bbbVjqpP/zww+P++++Pn376KTXv/fffL/X8r1UykdRHRFx66aUxY8aMtPPbDz/8EJdccklccskl0bhx40gkEuVe1b7NNtvE3//+9zXeEQDkL3lx1ciLq+err74qNe/dd9+Nd999t0rbO/jgg/O62B2Rn7/Bq0teXDPkxfLiqpIX5x55sbyYyjGMOXVC//79U1c7l2fJkiUxe/bsNSb0/fr1i+HDh8dWW21Vof3Wq1cvLrroorj88sujZcuWZS6zaNGimDNnTpkJfS6eQPfdd9+46667ynzW14oVK2LOnDllJvRt2rSJm2++uVLPUtp8883jkUceiV69epX5+rx588psr4KCgjjjjDPir3/9a9oVe+SmE088Me68887o2LFjma8vW7YsioqK1pg8tGnTpkIdbbmgQYMGce2118ZJJ52UNjTWKkuXLi03oe/bt2888sgjsckmm9R0mHnpt7/9bRx33HFlvrZo0aIoKioqldAPHDgw7YrtXNetW7d49NFHY+eddy7z9RUrVqzxeKnI90pdOCbbtm0bgwcPjmeeeSZuvvnmWknoy7Nw4cKYPXt2mQl9IpGIgQMHxrBhw9b6fbbDDjvEpZdemvYMrHy16o6NkndbLFmypNyEvkePHnHfffel3WGxJo0aNYo777wzOnXqVOq1VcdRyYR+8ODBqQ60ymrTpk0MGzYsNtxwwyqtX1XNmjWLu+66Kw499NAyj/9FixaVm9Dvs88+8cADD0SbNm1qOkyglsiLM0deTKbVhd/gq5MX1xx5sby4ouTFuU1enDny4rrBnd3UCcOGDYvFixfHO++8E6NGjYoPP/wwPvvsswo9I2S99daLPffcMw466KDo3bt3lfZ/2GGHxb777hv33HNPPPfcc6WGwShps802iz333DMOP/zwKu2vpvXt2zdeeumluP/+++Pxxx9f4/vp0KFDHHTQQXHcccdFs2bNKr2vDTbYIB555JF44YUX4r777ouPPvqo3Cv9W7ZsGf37949TTjklqz/QqLxf/OIX8dJLL8Wzzz4b//73v2PcuHGlfkyV1KFDh9hhhx2if//+sdtuu5WZIOeqRCIRZ599dhx88MExbNiwGDFiRLmJfP369aNXr15x3HHHxZ577lnLkeaf888/P3bYYYe44YYbSg1zt7qf//znccopp5SbHOeydu3axV133RWjRo2Ku+++O0aNGrXGBLtJkyax/fbbx4ABAyr8Gcr3Y7JevXpRWFgYjRo1ijZt2kS7du2ic+fO0bVr1+jTp09069at1jp999xzzxg+fHiMGDEiRo4cGePHj1/r8/CaNm0a/fv3j6OPPjq6d+9e4X0dfvjhsdtuu8XTTz8d77//fnz55ZepDphcv0uupMaNG8ewYcNi+PDhcfvtt5f7W6Njx45xzDHHxFFHHVXpNu3YsWM89thjceutt8ZDDz20xqu4zzjjjNhtt90q+zbS9OrVK55//vl48cUX46233orPP/88fvzxx1i0aNFaj6/qKCwsjL/+9a9x5JFHxrBhw+K///1vueeMwsLC6Nu3b5x88skVuuMQyC/y4sySF5Np+f4bvLLkxTVHXlyavFheLC8um7y47GXlxfknkSx5KRfUEUuXLo3vvvsuvvvuu5g5c2bMnz8/li1bFk2aNIlmzZpFu3btolu3bjVyBd6UKVPik08+iVmzZkVRUVHUr18/mjVrFhtvvHF06dIlp6/6K8vkyZPjk08+iZ9++inmzZsXzZo1izZt2sSWW24Zm2++eUb3VVRUFGPGjIkff/wxZs+eHYWFhdG6devo1KlTdO/evdSzPchPixYtio8++iimTZsWRUVFsXDhwtSx2bFjx9h8882jXbt22Q4zY1Y9L2vy5Mkxa9asWLZsWbRu3TrWX3/96N27d7Ro0SLbIealyZMnx9ixY1M/mps0aRIdO3aMnj17rlOfn6VLl8ZHH30UU6ZMSTte1ltvvdh0002jS5cu1R7er64dkzVp2bJl8c0338SkSZNi+vTpsWDBgiguLo4mTZpE69ato0uXLrH55psbkrGEzz//PCZMmBAzZ86MRCIR7dq1iy222CK22WabjGx/6dKlMWbMmPj222+jqKgoEolEbLjhhtGzZ8917q6hpUuXxujRo2Pq1Kkxa9asWLFiRbRp0yY22GCD6NOnz1rv+gTWLfLizJEXk2l17Te4vLhmyIvlxblIXlw18uLMkRevexS7AQAAAAAAAMg7HtoDAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPJOg2wHQG6YPXt2tkMgwxKJRLRq1SoiIoqKiiKZTGY3IGqU9q47tHXdor3rDm1dt2jvuqO8tm7dunUWo2JN5MbUFb6LID84ViF/OF6hcjKZF7uzGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC8o9gNAAAAAAAAQN5R7AYAAAAAAAAg7yh2AwAAAAAAAJB3FLsBAAAAAAAAyDuK3QAAAAAAAADkHcVuAAAAAAAAAPKOYjcAAAAAAAAAeUexGwAAAAAAAIC80yDbAbBmkyZNigkTJsS0adNixYoV0b59++jSpUt07do126EBAAAAAAAAZI1idxUsWLAgJkyYEOPGjYtx48bFxx9/HFOmTEm93qFDh3j99dertY8333wzbrnllhgzZkyZr2+55ZZx/PHHx4EHHlit/QAAAAAAAADkI8XuSrjnnnti+PDh8eWXX8aKFStqZB/JZDL++te/xv3337/G5T7//PP4/e9/H2+88UZcddVVUVhYWCPxAAAAAAAAAOQixe5KeP/992PixIk1uo9rrrmmVKG7T58+0b1796hfv358/vnn8d///jeSyWRERDz33HNRv379+Pvf/16jcQEAAAAAAADkEsXuamrSpEn87Gc/i08++SQWLlxYrW2NGDEi7rjjjtR0ixYt4oYbbogdd9wxbbkJEybEySefHNOmTYuIiKeffjp+/vOfxxFHHFGt/QMAAAAAAADkC8XuSmjYsGH06NEjunfvHttss0107949Nt9886hXr17069evWsXuZDIZ1157bWo6kUjEsGHDYrvttiu17NZbbx333ntvDBgwIJYsWRIRETfddFMcdNBB0ahRoyrHAAAAAAAAAJAvFLsr4brrrquxbb/66qtpQ6QPGDCgzEL3Kptuumn89re/jWHDhkVExMyZM+PRRx+NIUOG1FiMAAAAAAAAALmiXrYDYKUXX3wxbXrw4MFrXeeII46I+vXrl7sNAAAAAAAAgHWVYncOWL58ebz11lup6Q033DB69Oix1vXat28fvXr1Sk2PGTMmZs2aVRMhAgAAAAAAAOQUxe4cMHHixJg7d25qunfv3hVed/Vli4uLY/To0RmNDQAAAAAAACAXKXbngK+++iptequttqrwultvvXXa9Ndff52RmAAAAAAAAABymWJ3DihZoN5oo40qvO6GG264xm0BAAAAAAAArIsUu3PA9OnT06Y32GCDCq9bctlp06ZlJCYAAAAAAACAXNYg2wEQsXDhwrTppk2bVnjdksuW3FZFJRKJKq1H7lq9TbXvuk971x3aum7R3nWHtq5btHfdoa3zj3airnB+gvzgWIX84XiF7FHszgElC9SFhYUVXrdhw4Zr3FZFtWrVqkrrkR9atmyZ7RCoRdq77tDWdYv2rju0dd2ivesObZ0f5MbURc5PkB8cq5A/HK9QuwxjngOWLFmSNl2ZYnfJZRcvXpyRmAAAAAAAAABymTu7c0DJu7OXLl1a4XVLLtuoUaMqxVBUVFSl9chdiUQidQXZnDlzIplMZjkiapL2rju0dd2ivesObV23aO+6o7y2dvdw7pIbU1f4LoL84FiF/OF4hcrJZF6s2J0DmjRpkjZdmWJ3ybvCS26ropx4123JZFIb1yHau+7Q1nWL9q47tHXdor3rDm2dH7QRdZHzE+QHxyrkD8cr1C7DmOeAkgXqBQsWVHjdkstWtdgNAAAAAAAAkE8Uu3NA+/bt06anTZtW4XWnTp2aNr3BBhtkJCYAAAAAAACAXKbYnQM233zztOkffvihwuuWLIxvttlmGYkJAAAAAAAAIJcpdueAksXuCRMmVHjdTz75JG1asRsAAAAAAACoCxS7c0CXLl2iRYsWqemxY8dWeN0xY8ak/q5fv3706dMnk6EBAAAAAAAA5CTF7hzQoEGD2HXXXVPTU6dOjY8++mit602fPj1tud69e0ebNm1qJEYAAAAAAACAXKLYnSP222+/tOl//etfa13n4YcfjuLi4tT0vvvum/G4AAAAAAAAAHKRYneO6N+/f3Tt2jU1/dRTT8X7779f7vLffPNN3HXXXanpdu3axWGHHVajMQIAAAAAAADkCsXuHJFIJOLss89OTSeTyTjllFNi5MiRpZadMGFCHHvssbFkyZLUvNNOOy0aNWpUK7ECAAAAAAAAZFuDbAeQT6ZMmRJ77bVXma+tPpz4lClTYuutty5zuXvvvTf69u1b5mt77LFHnHDCCXHHHXdERMTcuXPj2GOPjT59+kSPHj2iXr168fnnn8d///vfSCaTqfUOPPDAOOKII6r6tgAAAAAAAADyjmJ3JSSTybSi9pqUt9zqReqynH322bF48eJ44IEHUvNGjx4do0ePLnP5/fffPy6//PIKxQQAAAAAAACwrjCMeY6pV69eXHzxxXH77bdHr169yl2ua9eu8be//S2uu+66aNiwYe0FCAAAAAAAAJAD3NldCR07dozPP/+8Vva12267xW677RbfffddfPLJJzFjxowoLi6O9u3bR5cuXWLLLbeslTgAAAAAAAAAcpFid47r1KlTdOrUKdthAAAAAAAAAOQUw5gDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcUuwEAAAAAAADIO4rdAAAAAAAAAOQdxW4AAAAAAAAA8o5iNwAAAAAAAAB5R7EbAAAAAAAAgLyj2A0AAAAAAABA3lHsBgAAAAAAACDvKHYDAAAAAAAAkHcaZDsA1mzZsmUxceLE+Pzzz2POnDmxZMmSaNasWbRr1y622Wab6NChQ7ZDBAAAAAAAAKh1it05avr06XHHHXfEU089FXPnzi13uS5dusSRRx4ZAwcOjPr169dihAAAAAAAAADZYxjzHPTqq6/Gr371q3jggQfWWOiOiPjiiy/i0ksvjSOOOCJmzJhRSxECAAAAAAAAZJc7u3PM22+/HWeeeWYsW7YsNa9Bgwaxww47RNeuXaNx48Yxe/bsGDNmTHz66aepZcaNGxfHHHNMPProo9GsWbNshA4AAAAAAABQaxS7c8jixYvjj3/8Y1qhe7vttou//e1vsdFGG5VafuTIkfH73/8+Zs6cGRERX3/9ddxwww1x0UUX1VrMAAAAAAAAANlgGPMc8vrrr8cPP/yQmu7cuXPcfvvtZRa6IyJ23HHHuPPOO6NBg/9ds/DYY4/F0qVLazxWAAAAAAAAgGxS7M4hI0eOTJs+9thjo0mTJmtcp1u3btG/f//U9IIFC+Ljjz+ukfgAAAAAAAAAcoVidw6ZPn162nSvXr0qtF6fPn3SpmfMmJGpkAAAAAAAAABykmJ3DlmxYkXadKNGjSq0XuPGjdOmE4lExmICAAAAAAAAyEWK3TmkY8eOadNTp06t0HpTpkxJm+7UqVPGYgIAAAAAAADIRYrdOWSXXXZJm37hhRfWuk5xcXG89NJLqekOHTrElltumfHYAAAAAAAAAHKJYncO2X333dMK1Y8//niMGDGi3OWTyWT87W9/i2+//TY179RTT4169TQrAAAAAAAAsG5rkO0A+J/69evHddddF0ceeWQUFRVFcXFxnHLKKTFw4MA46KCDomvXrtG4ceOYPXt2jB07Nu69994YNWpUav0jjjgiDj300Crt23O+1z2rt6n2Xfdp77pDW9ct2rvu0NZ1i/auO7R1/tFO1BXOT5AfHKuQPxyvkD2JZDKZzHYQpJs0aVL84Q9/iPfee69Cy6+33npxxhlnxMCBA2s4MgAAAAAAAIDcoNidw4YPHx5XXXVVzJkzp9xltt566/jzn/8cPXv2rMXIAAAAAAAAALJLsTsHffXVV3HFFVfEO++8U+F1dtttt7jssstigw02qNI+i4qKqrQeuSuRSETLli0jImLOnDnhUF+3ae+6Q1vXLdq77tDWdYv2rjvKa+tWrVplMSrWRG5MXeG7CPKDYxXyh+MVKieTebFndueYd955J0499dRYtGhRREQUFBTEYYcdFgcccEDqmd1FRUUxbty4ePjhh+Ott96KiIg333wzDj744PjnP/8Zm2++eaX368S7bksmk9q4DtHedYe2rlu0d92hresW7V13aOv8oI2oi5yfID84ViF/OF6hdil255BJkybFaaedlip0t2jRIu68885SQ5S3a9cu+vfvH/3794+HHnoo/vznP0dExKxZs+Lkk0+Op556Kho3blzb4QMAAAAAAADUmnrZDoD/ufrqq2PhwoWp6csuu2ytz+IeNGhQDBo0KDX93Xffxb/+9a8aixEAAAAAAAAgFyh254h58+bFq6++mpreZJNNYt99963QuieeeGLa9FNPPZXR2AAAAAAAAAByjWJ3jvj444+juLg4Nb3ddttFIpGo0LobbbRRdOzYMTX9xRdfxJIlSzIeIwAAAAAAAECuUOzOET/99FPadLt27Sq1/urLr1ixIoqKijIRFgAAAAAAAEBOUuzOEQ0bNkybXrx4caXWX7RoUdp0kyZNqh0TAAAAAAAAQK5S7M4Rbdq0SZv+6quvKrzusmXLYtKkSanpwsLCaN68ecZiAwAAAAAAAMg1it05Yuutt46CgoLU9HvvvRczZ86s0LqvvfZaLFy4MDXdq1evTIcHAAAAAAAAkFMUu3NEkyZNYvvtt09NL1myJC6//PK1rjd79uz429/+ljavX79+GY8PAAAAAAAAIJcodueQU089NW36xRdfjDPOOKPcO7zHjRsXRx55ZEyZMiU1b7311ouBAwfWaJwAAAAAAAAA2dYg2wHwP3369ImhQ4fGrbfempr30ksvxYgRI6Jv377RtWvXaNKkSRQVFcXYsWNj/PjxaesXFBTE1VdfHU2aNKnt0AEAAAAAAABqlWJ3jjnrrLOioKAghg0bFsXFxRERsXTp0nj77bfj7bffLne9Nm3axFVXXRU77rhjbYUKAAAAAAAAkDWGMc9Bp512Wjz22GNx4IEHRsOGDde4bNu2beOkk06KZ599NnbbbbdaihAAAAAAAAAgu9zZnaO23nrr+Pvf/x5XXHFFTJgwIb766quYO3duLF68OJo2bRqtW7eOrbfeOjbbbLNIJBLZDhcAAAAAAACgVmW92H3mmWfGkUceGX379s12KDmpsLAwevXqFb169cp2KAAAAFBt+gEAAADIlKwPY/7iiy/GMcccE/vtt1/cf//9MXfu3GyHBAAAANQQ/QAAAABkStaL3at88803ceWVV8auu+4aF110UYwbNy7bIQEAAAA1RD8AAAAA1ZUzxe5EIhHJZDIWL14cTzzxRAwcODAOOeSQePTRR2PRokXZDg8AAADIIP0AAAAAVFfWi9233HJL7LrrrpFIJCIiUv9PJpMxYcKEuOSSS2KXXXaJv/zlLzFx4sRshgoAAABUk34AAAAAMiWRTCaT2Q4iImLq1Knx8MMPx/Dhw2PmzJkR8b+rvFf9HRHRu3fvOPLII2OfffaJgoKCrMW7rpk9e3a2QyDDEolEtGrVKiIiioqKIkcOdWqI9q47tHXdor3rDm1dt2jvuqO8tm7dunUWo8odudgPIDemrvBdBPnBsQr5w/EKlZPJvDhnit2rFBcXxyuvvBKPPPJIvPvuu5FMJtOu8l71d6tWreLQQw+NgQMHxsYbb5zNkNcJEvp1jy/XukV71x3aum7R3nWHtq5btHfdodhdMbnUDyA3pq7wXQT5wbEK+cPxCpWzThe7Vzdp0qR46KGH4oknnoiioqKIKH2VdyKRiB133DEGDRoU/fr1i3r1sj4ye16S0K97fLnWLdq77tDWdYv2rju0dd2ivesOxe7Ky3Y/gNyYusJ3EeQHxyrkD8crVE6dKXavsnTp0njhhRfikUceidGjR0dElHmV9/rrrx+HHXZYHHbYYdG+ffusxZuPJPTrHl+udYv2rju0dd2ivesObV23aO+6Q7G76rLVDyA3pq7wXQT5wbEK+cPxCpVT54rdq/vyyy/jX//6VzzzzDMxb968Uq8nEomoX79+7LHHHjFo0KD4xS9+kYUo84+Eft3jy7Vu0d51h7auW7R33aGt6xbtXXcodmdGbfYDyI2pK3wXQX5wrEL+cLxC5dTpYvcqixcvjmeeeSYefvjh+OSTT9Ku8I743xXfm2yySQwePDgOOeSQaNasWdbizXUS+nWPL9e6RXvXHdq6btHedYe2rlu0d92h2J1ZtdEPIDemrvBdBPnBsQr5w/EKlZPJvDhvH3DdqFGjOOigg+LYY4+NjTbaqNTzuyJWJrzfffddXHnlldG/f/+4/fbbY9myZdkMGwAAAKgC/QAAAACU1CDbAVTFpEmT4pFHHoknnngiddV1ySu6V0kkEpFMJmPOnDlx3XXXxbPPPhvDhg2Ljh071nrcAAAAQOXpBwAAAKAseVPsLi4ujtdeey0efvjhePfddyOZTKZdxb3q7759+8bgwYOjefPm8cgjj8Rrr70Wy5cvTy0zceLEOProo+Ppp582rDkAAADkKP0AAAAArE3OF7unTp0ajzzySDz++OPx448/RsTKq7ZXDVOWTCajSZMmMWDAgBg8eHBsvvnmqXV/8YtfxI8//hj33HNPPPjgg7FkyZJIJpMxderUuP/+++OUU07J1tsCAAAAyqAfAAAAgIpKJEuO95UDkslkvPHGG/HII4/Ef/7zn1ixYkWZV2936dIlBg0aFAMGDIimTZuucZtff/11HH300fHTTz9FMpmMrbfeOoYPH17j7yVfrBoGjnVHIpGIVq1aRUREUVFRqaH9WLdo77pDW9ct2rvu0NZ1i/auO8pr69atW2cxqtyUK/0AcmPqCt9FkB8cq5A/HK9QOZnMi3Pqzu6ZM2fGo48+Go899lhMnTo1IkpfvV2/fv3Yc88948gjj4y+fftWeNubbbZZnHzyyfGXv/wlIiK+/fbbmngLAAAAQAXpBwAAAKA6cqLY/c4778TDDz8cI0aMiOLi4rSrtyNWJrrt2rWLgQMHxuGHHx7rr79+lfbTu3fv1N+LFi2qfuAAAABApekHAAAAIBOyXuzee++9Y/LkyRFR+urtZDIZ2223XRx55JGx1157RYMG1Qu3ZcuWEfG/5BkAAACoXfoBAAAAyJSsF7snTZqUSjpXJbdNmjSJAQMGxODBg2OLLbbI+D5XJdMAAABA7dIPAAAAQKZkvdi9SjKZjC222CIGDRoUBx10UDRt2jTj+2jXrl3cf//9Gd8uAAAAUDn6AQAAAKiurBe7GzRoEP369YvBgwfH9ttvX6P7KiwsjL59+9boPgAAAIDy6QcAAAAgU7Je7H7ttdeiffv22Q4DAAAAqAX6AQAAAMiUetkOQIILAAAAdYd+AAAAADIl68VuAAAAAAAAAKgsxW4AAAAAAAAA8k7Wi92jR4+O/v37R//+/WPvvfeOn376qdLb+PHHH2OfffaJ/v37x5577hmffPJJDUQKAAAAVJd+AAAAADIl68XuRx99NKZMmRI//PBDbLXVVtG2bdtKb2O99daLLbfcMqZMmRJTpkyJRx99tAYiBQAAAKpLPwAAAACZkvVi95tvvpn6+8ADD6zydgYMGJD6+/XXX69WTAAAAEDN0A8AAABApmS12P3VV1/FrFmzIiKiQYMGscsuu1R5W7vssks0aNAgkslkzJw5M7799tsMRQkAAABkgn4AAAAAMimrxe4vv/wyIiISiUR06dIlCgsLq7ytwsLC6NKlS6ltAwAAALlBPwAAAACZlNVi9/Tp01N/b7jhhtXe3kYbbZT6e9q0adXeHgAAAJA5+gEAAADIpKwWuxcuXJj6u2nTptXeXpMmTcrcNgAAAJB9+gEAAADIpKwWu1dPSufOnVvt7c2bNy/1d4MGDaq9PQAAACBz9AMAAACQSVnNBFu3bp36e9KkSdXe3uTJk8vcNgAAAJB9+gEAKEu/fv3SHnWRi9q3bx+vv/56tsMAAErIarF74403joiIZDIZ33zzTUybNi022GCDKm1r2rRp8dVXX6WmV39uFwAAAJB9+gEAKMv06dNj6tSp2Q4DAMhDWS12b7PNNtG4ceNYvHhxRETcfffdcdFFF1VpW/fcc0/q74YNG0bv3r0zEiMAAACQGfoBAFiTRL160Xy99tkOI828H6dHcsWKbIcBAJQjq8XuBg0axE477RSvvvpqREQ89NBD0b9//9h+++0rtZ1Ro0bFgw8+GIlEIiIidthhhygsLMx4vAAAAEDV6QcAYE2ar9c+LnxxXLbDSHPlvj1i7gx3nQNArqqX7QBOPPHEiIhIJBKxbNmyOPXUU+OFF16o8Povv/xynHbaaVFcXBzJZDJtmwAAAEBu0Q8AAABApmS92N2jR4/Yd999I5lMRiKRiPnz58fZZ58dxxxzTDz//PPx008/lVpn1qxZ8cILL8Sxxx4bv/vd72LevHkRsTJR3muvvaJPnz61/TYAAACACtAPAAAAQKZkdRjzVa644or44osv4quvvopEIhHJZDLee++9eO+99yIiomXLltGyZcuIiJgzZ07MmTMnte6q5DiZTEaXLl3iqquuysp7AAAAACpGPwAAAACZkPU7uyMimjZtGnfffXf06NEjlbRGrExgk8lkFBUVxXfffRffffddFBUVpeZHRCrB7dWrV9x9993RpEmTbL4VAAAAYC30AwAAAJAJOVHsjoho3759/POf/4wTTzwxmjRpkpbElvVfxMokuFmzZnHqqafGP//5z2jXrl023wIAAABQQfoBAAAAqK6cGMZ8lcLCwjj77LPj+OOPj6eeeipGjhwZY8aMidmzZ6ct16ZNm+jTp0/suOOOMWDAgGjWrFmWIgYAAACqSj8AAAAA1ZFTxe5VWrRoEUOGDIkhQ4ZERERxcXEUFRVFRESrVq2ifv36WYwOAAAAyCT9AAAAAFRFTha7S6pfv360bds222EAAAAAtUA/AAAAABWRM8/sBgAAAAAAAICKUuwGAAAAAAAAIO8odgMAAAAAAACQd3L6md2LFi2KefPmxfLlyyu97kYbbVQDEQEAAAA1RT8AAAAAlZFTxe4ffvghHnvssXj33Xfj008/jcWLF1dpO4lEIiZMmJDh6AAAAIBM0g8AAABAdeREsXv58uXxj3/8I+65554oLi6OiIhkMpnlqAAAAICaoB8AAACATMh6sTuZTMZZZ50Vr776aiqxTSQSkUgkJLoAAACwjtEPAAAAQKZkvdj94IMPxiuvvJKW2CaTyejQoUNsvvnm0aJFiygoKMh2mAAAAEAG6AcAAAAgU7Ja7E4mk3HrrbemXb3dv3//OOuss2KLLbbIZmgAAABAhukHAAAAIJOyWuz++OOP48cff0xdzX3wwQfHX//612yGBAAAANQQ/QAAAABkUr1s7nzixIkRsfLK7oYNG8aFF16YzXAAAACAGqQfAAAAgEzKarF79uzZERGRSCSiZ8+e0bx582yGAwAAANQg/QAAAABkUlaL3Y0aNUr93a5duyxGAgAAANQ0/QAAAABkUlaL3RtssEHq70WLFmUxEgAAAKCm6QcAAAAgk7Ja7O7evXvUq7cyhG+++SaboQAAAAA1TD8AAAAAmZT1O7u33377SCaT8c0330h0AQAAYB2mHwAAAIBMymqxOyLi9NNPj/r160dExHXXXZflaAAAAICapB8AAACATMl6sbtPnz5x+umnRzKZjFdeeSWuvfbabIcEAAAA1BD9AAAAAGRK1ovdERFDhw6N8847LxKJRNxxxx0xZMiQeOedd2L58uXZDg0AAADIMP0AAAAAZEKDbAdw9NFHp/5u3rx5zJkzJz744IM4/vjjo1GjRrHxxhtHy5YtI5FIVHibiUQi7rvvvpoIFwAAAKgG/QAAAABkStaL3e+9915aAptIJCKZTEZExKJFi2LixImVSnCTyWSllgcAAABqj34AAAAAMiXrxe6ySFIBAACg7tAPAAAAQFXkRLF71RXcAAAAwLpPPwAAAACZkPVi92effZbtEAAAAIBaoh8AAACATKmX7QAAAAAAAAAAoLIUuwEAAAAAAADIO4rdAAAAAAAAAOSdrD+zm8qZOnVqfPzxx/HDDz/EwoULo2HDhrHeeuvFpptuGt26dYvCwsJshwgAAAAAAABQ4xS788CKFSvi6aefjvvvvz8++eSTcpcrKCiI3r17x4knnhi77LJLLUYIAAAAAAAAULtystj96aefxmuvvRYffvhhTJo0KebMmRMLFiyIRCIREyZMKLX83LlzY/78+RERUVhYGOutt15th1xjvv/++zjnnHNi7Nixa1122bJl8d5770XPnj0VuwEAAMgb+gEAAACoipwqdn/++edx5ZVXxqhRo1LzksnkWtcbNWpUnHHGGRER0bhx43jnnXeicePGNRZnbfniiy/iN7/5TcycOTM1L5FIRI8ePaJbt27Rtm3bWLJkSWpo88mTJ2cxWgAAAKgc/QAAAABUR84Uu4cPHx6XXXZZLFmyJJLJZCQSidRriURijclu//79Y8MNN4wffvghFi1aFC+99FIcdNBBtRB1zZk1a1Ycf/zxaYXuPffcMy688MLo2LFjmetMnDgxhg8fHs2bN6+tMAEAAKBK9AMAAABQXfWyHUBExEsvvRR/+MMfYvHixal5yWQyNtxww9hqq63WelV3vXr1Yv/9909Nv/766zUWa2254oorYtq0aanpoUOHxs0331xuoTsiomvXrnHBBRfESSedVBshAgAAQJXoBwAAACATsl7snjFjRlxwwQUREamruI888sh45ZVX4vXXX48bb7yxQtvp379/RKxMjt9///2aCbaW/Pe//41nn302Nd2/f/8466yzshgRAAAAZIZ+AAAAADIl68OY33zzzbFo0aKIiKhfv35ce+21sc8++6ReX30YszXp3r17NGjQIJYvXx5FRUUxefLk2HjjjWsk5pp2++23p/4uKCiICy+8MIvRAAAAQOboBwAAACBTsnpnd3FxcTz33HORSCQikUjE8ccfn5bgVkaDBg1is802S01//fXXmQqzVk2ePDnefffd1PRuu+0mWQcAAGCdoB8AAACATMpqsXvs2LExf/78SCaT0aBBgzjhhBOqtb0NNtgg9ffqz7vOJ88//3zas8kOOOCALEYDAAAAmaMfAAAAgEzKarF70qRJEbFyiLLu3btHs2bNqrW91defP39+tbaVLWPHjk2b3nbbbbMTCAAAAGSYfgAAAAAyKavP7J41a1bq7w033LDa21v9uV7FxcXV3l42jB8/PvV3+/btY/3114+IiO+++y6GDx8eb7/9dkydOjUWLVoUrVu3jk033TR22mmnGDBgQLRt2zZbYQMAAMBa6QcAAAAgk7Ja7M50UjpnzpzU382bN6/29mrbvHnzYsaMGanpjTfeOJYvXx633npr3HLLLbF8+fK05RcuXBhTpkyJt99+O2688cY4/vjj45RTTkn7dwUAAIBcoR8AAACATMpqsbtNmzapv1cv8lbVF198kfq7VatW1d5ebSsqKkqbXm+99eKiiy6Kp556aq3rLly4MG644Yb47LPP4rrrrosGDSrXtArk657V21T7rvu0d92hresW7V13aOu6RXvXHdq6tFzvB9BO1BXOT+SafPgcJhKJWo/TsQr5w/EK2ZPVYveqIcuSyWR8+umnsWzZsigoKKjStr755puYPn16anrLLbfMSIy1ad68eWnT77zzTmpeo0aN4thjj439998/OnXqFMuWLYvPP/88/v3vf8fTTz8dyWQyIiJefvnluPbaa+O8886r1L7z8eIAKq5ly5bZDoFapL3rDm1dt2jvukNb1y3au+7Q1ivlej+A3Ji6qKzz07bbbhvTpk3LQjQVt8EGG8QHH3yQ7TDIkHwoDCUSiax+T/gtAfnD8Qq1K6vF7t69e0ejRo1iyZIlsXjx4njuuefioIMOqtK2HnjggdTfbdu2jc022yxDUdaehQsXpk2vKnS3atUq7r333thqq61SrzVq1Ci23Xbb2HbbbWPnnXeO888/P1asWBEREXfffXcceOCB0a1bt9oLHgAAANZCPwDkh2nTpsWUKVOyHQYAAKxVVovdhYWFscMOO8Qbb7wRERHXXXdd9OvXL1q0aFGp7Xz44YfxyCOPpK4A3HvvvTMdaq0oLCwsc/5ll12WVugu6cADD4zx48fHfffdFxErr5C/++67429/+1uF911yCHXyXyKRSF1BNmfOnNTd/6ybtHfdoa3rFu1dd2jrukV71x3ltXVdvns41/sB5MbUFWv7Llo1nahXL5qv177W41uTeT9Oj+SKFZFMJh2z65B8+D2Ujc+c342QPxyvUDmZzIuzWuyOiDj55JPjjTfeiEQiEdOnT4/jjjsubrvttmjbtm2F1n/33Xfjd7/7Xaz4/z9yGzRoEMcdd1wNR10zmjZtWmre5ptvHvvss89a1z3xxBPjX//6VyxbtiwiIt54441YsWJF1KtXr0L7duJdtyWTSW1ch2jvukNb1y3au+7Q1nWL9q47tPX/5HI/gDaiLirr/LRquvl67ePCF8dlI6xyXblvj5g7Y6rz6jomH9oy25+5bO8fqDjHK9SuilVCa1DPnj3jgAMOiGQyGYlEIsaPHx/77bdf3HzzzfH111+nhuZeXXFxcYwcOTLOOuus+M1vfpO6SiaRSMSQIUOiY8eOWXgn1VdWsXuPPfao0Lrrrbde9OjRIzU9Z86c+PLLLzMWGwAAAGSCfgAAAAAyJet3dkdEXHHFFfHNN9/EhAkTIpFIxNy5c+Omm26Km266KQoKCtKW3W+//eL777+P5cuXR0SkkttkMhm9e/eOc889NxtvISPatm0bBQUFqbuzIyK6dOlS4fW7du0aH374YWp6+vTp0bVr14zGCAAAANWlHwAAAIBMyPqd3RERjRo1ijvvvDN22GGHVNIasTKBXbp0adr0N998E8uWLfvfs4P+f4K70047xe233x7169fP2vuoroKCgthkk03S5q16xkNFlFx2zpw5GYkLAAAAMkk/AAAAAJmQE8XuiIg2bdrEPffcE+eee260bt06LYld9f/V/4tYmfQ2b948zjrrrLj99tujWbNmWYs/U7bYYou06aVLl1Z43ZLLNmzYMCMxAQAAQKbpBwAAAKC6cmIY81USiUQcf/zxMWTIkHj22Wfjv//9b3z44YcxY8aMtGd2tWzZMnr37h0777xzDBgwIJo3b57FqDOrb9++8dJLL6Wmp0+fXuF1p02bljbdunXrjMUFAAAAmaYfAAAAgOrIqWL3Kg0bNoxDDz00Dj300IhYeeX2nDlzYtmyZdGqVatSz+9al+y5555x+eWXp65oHz16dBx99NFrXS+ZTMbYsWNT0/Xr149u3brVVJgAAACQMXW5HwAAAICqy5lhzNckkUhEq1atol27dut8grvBBhtEnz59UtOvv/56zJo1a63rvf322/HDDz+kpnv06GE4NwAAAPJSXeoHAAAAoOryothd15x++umpv5csWRJ/+ctf1rj8ggUL4oorrkibN2TIkBqJDQAAAAAAACAXKHbnoB133DF233331PTzzz8f559/fsybN6/UspMmTYrf/OY38c0336Tmde/ePfbbb7/aCBUAAAAAAAAgK3Lymd1E/O1vf4uBAwemithPPvlkvPbaa7HLLrvEJptsEsuWLYuJEyfGu+++G8uWLUut16ZNm7jhhhuiXj3XMQAAAAAAAADrLsXuHNWyZcu4884744wzzohPPvkkIiLmzZsXzz//fLnrbLbZZnHbbbfFRhttVFthAgAAAAAAAGRF1ovd/fv3z/g2E4lEvPrqqxnfbm3r2LFjPPLII3H33XfHI488ElOmTClzufXXXz+OOeaYOOqoo6JRo0a1HCUAAABUnH4AAAAAMiXrxe4pU6ZEIpGIZDKZsW0mEomMbSvbCgoK4qSTTooTTzwxPv744/jmm29i5syZkUgkok2bNrHVVltFt27dsh0mAAAAVIh+AAAAADIl68XuVaqbmCaTyYwny7kkkUhEjx49okePHtkOBQAAAKpNPwAAAADVlfVid2WfL71ixYqYM2dOLFq0KCL+lxw3btw4WrdunfH4AAAAgMzRDwAAAECmZL3Y/frrr1dpvalTp8brr78e9957b0yePDmKi4vj5JNPjsMOOyzDEQIAAACZoh8AAACATKmX7QCqasMNN4zBgwfHM888E/vtt18sXbo0LrnkknjooYeyHRoAAACQYfoBAAAAKClvi92rNGrUKK6++uro06dPJJPJuOKKK2LChAnZDgsAAACoAfoBAAAAWCXvi90REfXr148LLrggIiKKi4vjpptuynJEAAAAQE3RDwAAAEDEOlLsjojo0aNHbLTRRpFMJuOtt96KWbNmZTskAAAAoIboBwAAAGCdKXZHRGy55ZYRsfKq7jFjxmQ5GgAAAKAm6QcAAACo29apYnezZs1Sf0+bNi2LkQAAAAA1TT8AAABA3bZOFbtXH7JswYIFWYwEAAAAqGn6AQAAAOq2dabYvWTJkhg7dmxqulWrVlmLBQAAAKhZ+gEAAABYZ4rdw4YNS7uKe/PNN89iNAAAAEBN0g8AAABAg2wHUF1z586Nm2++Oe6///5IJBKRTCajRYsW0atXr2yHBgAAAGSYfgAAAABWyXqx+6abbqr0OsXFxTFv3rz48ssvY/To0bFs2bJIJpMREZFIJOKYY46J+vXrZzpUAAAAoJr0AwAAAJApOVHsTiQSVV5/9eQ2mUxG79694/jjj89UeAAAAEAG6QcAAAAgU/L+md2rEuRkMhn77rtv3HbbbVFYWJjlqAAAAICaoB8AAACAVbJ+Z3fE/67Krop27drFjjvuGIcffnhsu+22GYwKAAAAqAn6AQAAAMiErBe777///kqvU79+/WjWrFm0bds21ltvvRqICgAAAKgJ+gEAAADIlKwXu/v27ZvtEAAAAIBaoh8AAACATMn7Z3YDAAAAAAAAUPcodgMAAAAAAACQdxS7AQAAAAAAAMg7it0AAAAAAAAA5B3FbgAAAAAAAADyToNsB3DTTTdlbd+nnXZa1vYNAAAAdZF+AAAAADIlJ4rdiUQiK/uW5AIAAEDt0g8AAABApmS92L26ZDJZ5vySSXBFl1vTfrKVWAMAAAAr6QcAAACgOnKi2L160rp68rlqfkWS2mQyWe5yAAAAQO7QDwAAAEAmZL3Yff/990dExHfffRdXX311zJ07N5LJZDRo0CB23nnn6NGjR3Tu3DmaN28eERHz5s2Lb7/9NsaNGxdvv/12LF++PBKJRLRs2TLOPffc6NSpUzbfDgAAALAG+gEAAADIlKwXu/v27RujR49OJbiJRCIGDx4cp5xySrRp02aN686aNStuvvnmeOihh2Lu3Lnx97//PW699dbo06dPLUUPAAAAVIZ+AAAAADKlXrYDmDFjRpx88skxZ86caNCgQVx//fVx8cUXrzXBjYho06ZN/PGPf4zrr78+6tevH3Pnzo2TTz45pk+fXguRAwAAAJWlHwAAAIBMyXqx+8Ybb4w5c+ZEIpGIoUOHxt57713pbey9994xdOjQiIiYO3du3HDDDZkOEwAAAMgA/QAAAABkSlaL3YsXL47nn38+IiIaNWoUxx13XJW39dvf/jYaNWoUyWQyXnzxxVi8eHGmwgQAAAAyQD8AAAAAmZTVYvcHH3wQCxYsiEQiET179ozGjRtXeVuNGzeOXr16RUTEwoUL44MPPshQlAAAAEAm6AcAAAAgk7Ja7J42bVrq77Zt21Z7e6tvY/VtAwAAANmnHwAAAIBMapDNnc+aNSv197x586q9vfnz55e5bQDIZf369Yvp06dXaNlEIhGJRCIiIpLJZCSTyZoMLaV9+/bx+uuv18q+AIB1l34AAAAAMimrxe6WLVtGxMrO+gkTJlRrW8lkMj755JNS2waAXDd9+vSYOnVqtsMAAKhx+gEAAADIpKwWuzt27Jj6+6effoqXX3459t577ypt6+WXX44ff/yxzG0DQD5I1KsXzddrn+0w0sz7cXokV6zIdhgAwDpCPwAAAACZlNVi93bbbRfNmjWLBQsWRDKZjMsvvzx+9rOfRYcOHSq1ne+//z4uv/zySCQSkUwmo2nTptG3b98aihoAakbz9drHhS+Oy3YYaa7ct0fMneGucwAgM/QDAAAAkEn1srnzwsLCOOiggyKZTEYikYgZM2bEoEGD4s0336zwNt58880YPHhw/Pjjj6ntHHzwwVFQUFCDkQMAAACVpR8AAACATMrqnd0REWeeeWa89NJL8eOPP6YS3aFDh0b37t3jgAMOiJ49e0anTp2iWbNmERExf/78+O6772Ls2LHx3HPPxfjx41PJbUREu3bt4ne/+1023xIAAABQDv0AAAAAZErWi93NmjWLO+64I4499tiYM2dOagiycePGxccff7zGdZPJZEREap1WrVrF7bffnkqIAQAAgNyiHwAAAIBMyeow5qt069Yt/vnPf8aWW26Zujp7VeK6pv9WX27VNrp165bttwMAAACsgX4AAAAAMiEnit0REVtssUU89thjcf7558dGG22Uulp7lVUJ7eqSyWRstNFGcf7558djjz0WW2yxRW2GDAAAAFSRfgAAAACqK+vDmK+uQYMG8Zvf/CaOPfbYeP/99+PDDz+M8ePHx08//RRz5syJiIiWLVtG27ZtY5tttomf//znsd1225VKfgEAAIDcpx8AAACA6sipYvcqiUQi+vbtG3379s12KAAAAEAN0w8AAABAVeTMMOYAAAAAAAAAUFGK3QAAAAAAAADkHcVuAAAAAAAAAPJOTj6zOyLihx9+iA8++CAmTZoUc+bMiQULFkRExF//+tcsRwYAAABkmn4AAAAAKiunit3JZDKefvrpuPvuu2PixImlXkskEmUmua+88ko88MADERHRqlWruOGGG2olXgAAAKDq9AMAAABQHTlT7J4+fXqcc8458eGHH0bEyqQ2IiKRSKT+Ls/Pf/7zOOecc2Lp0qWRSCRi9OjR0adPnxqPGQAAAKga/QAAAABUV048s3v69OkxcODA+PDDD0sltKuu5F6TNm3axF577ZWafuGFF2okTgAAAKD69AMAAACQCVkvdhcXF8fQoUNj2rRpqXlt2rSJU045Je67776455571npFd0RE//79U3+PHDmyRmIFAAAAqkc/AAAAAJmS9WHMH3/88fj0009TV23vvffecdVVV0WTJk0iImLKlCkV2s5OO+0UESuvAP/qq69izpw50bJly5oJGgAAAKgS/QAAAABkStbv7L7rrrtSf2+77bZx/fXXpxLcymjZsmVssMEGqemvvvoqI/EBAAAAmaMfAAAAgEzJarF78uTJ8d1336Wm//CHP0S9elUPqXPnzqm/J02aVJ3QAAAAgAzTDwAAAEAmZbXY/fHHH0dERCKRiE6dOkW3bt2qtb0WLVqk/p4zZ061tgUAAABkln4AAAAAMimrxe5Zs2al/t5iiy2qvb1GjRql/l60aFG1twcAAABkjn4AAAAAMimrxe6FCxem/m7cuHG1tzd//vyMbg8AAADIHP0AAAAAZFJWi92tWrVK/Z2J4camTp1a5rYBAACA7NMPAAAAQCZltdjdpk2biIhIJpPx2WefVWtbCxYsiIkTJ6amO3ToUK3tAQAAAJmlHwAAAIBMymqxu2fPnqm/Z86cGePHj6/ytp5++ukoLi6OiIjCwsLo0aNHteMDAAAAMkc/AAAAAJmU1WJ3u3btomvXrqnpG2+8sUrbmTt3btx2222RSCQikUjEtttuG4WFhZkKEwAAAMgA/QAAAABkUlaL3RERgwYNSv391ltvxbBhwyq1/qJFi+LMM8+MadOmRTKZjIiIo48+OqMxAgAAAJmhHwAAAIBMyXqx+7DDDouOHTtGxMpndt14441xzjnnxJQpU9a67ltvvRWHHXZYjBw5MnU19zbbbBO77bZbTYcNAAAAVIF+AAAAADKlQdYDaNAgrr/++hgyZEgsXrw4kslkPP/88/HCCy9E9+7dUwnwKrfffnt8++238d///jemT58eyWQyEolEJJPJaNGiRVx77bVZeicAAADA2ugHAAAAIFOyXuyOiNhmm23i2muvjbPPPjsWL14cERErVvw/9u48Kqr6/+P4CxBcAMUFMVcy91zLpX4tlvkt09wr0zJtNUv7aoua37QySyu1xa3SyjS3zCUr00zNskzNfUtzVxREAQVBQGZ+f3CYvDDADAzMvfB8nOM5fi53ec/cbd6f911s2rVrl3bt2uUYz2636/3333f8X5IjwQ0KCtKHH36oGjVqFP4HAAAAAAAALqMfAAAAAADgCV5/jHmGO++8U4sWLVKdOnUcCWyGjEeTZSS0GcOk9GS3du3aWrBggW6++eZCjxsAAAAAALiPfgAAAAAAQH6Z4s7uDHXq1NHy5cu1atUqffXVV9qxY4euXLmSZbyMR5Y1atRIjzzyiLp16yZfX9PU7QEAAAAAgAvoBwAAAAAA5Iepit1S+pXaHTp0UIcOHZSUlKQdO3YoMjJScXFxSk1NVfny5VWxYkU1b95cFSpU8Ha4AAAAAAAgH+gHAAAAAADklVeL3WlpaUpKSnK0y5QpY7gyu3Tp0jySDAAAAACAIoJ+AAAAAACAJ3n1mV9Lly5Vq1at1KpVK910002Kjo72ZjgAAAAAAKAA0Q8AAAAAAPAkr97Zff78edntdklSo0aNFBYW5s1wAAAAAABAAaIfAAAAAADgSV69s7t06dKS0t/Pdc0113gzFAAAAAAAUMDoBwAAAAAAeJJXi92VKlXy5uItbezYsapfv77h34gRI7wdFgAAAAAA2aIfAAAAAADgSV4tdteuXdvx/8jISC9GYi07duzQ3LlzvR0GAAAAAABuoR8AAAAAAOBJXi12N2jQQLVq1ZLdbtfevXt14cIFb4ZjCampqRo1apRsNpu3QwEAAAAAwC30AwAAAAAAPMmrxW5JeuCBByRJaWlp+vTTT70cjfl9+umnOnjwoCQpNDTUy9EAAAAAAOAe+gEAAAAAAJ7i9WL3448/rubNm8tut2vWrFlasWKFt0MyrSNHjujjjz+WJJUuXVovvPCClyMCAAAAAMA99AMAAAAAADzF68VuX19fTZ48Wc2aNVNaWppefPFFjRo1SidOnPB2aKZit9s1atQopaSkSJKeffZZVatWzctRAQAAAADgHvoBAAAAAACeUsLbAUyZMkWS1KZNGx06dEiXLl3SN998o2+++UZ16tRRo0aNVKFCBQUGBro130GDBhVEuF6zYMEC/fXXX5KkevXq6bHHHtO2bdu8HBUAAAAAAO6hHwAAAAAA4CmmKHb7+Pg42j4+PrLb7ZKkf/75R4cOHcrTfItSkhsVFaWJEydKSv9+3njjDfn7+3s5KgAAAAAA3Ec/AAAAAADAU7xe7Hbm6qTXXXa7PV/Tm9Gbb76p+Ph4SdKDDz6oG264wcsRAQAAAADgOfQDAAAAAADywhTF7owruJHVTz/9pNWrV0uSKlasqBdffNHLEQEAAAAAkD/0AwAAAAAAPMHrxe7Zs2d7OwTTio+P15tvvulojxgxQuXKlfNiRAAAAAAA5A/9AAAAAAAAT/F6sbt169beDsG03n33XZ09e1aS9H//93/q0qVLgS2LR74VPZnfgYeijfVtbVZYZz4+PpaIs6hh3y4+WNfFC+u7+GBdO2fmfgDWE4qL3I5PVtgXyFGKFiusS29sc/yWAKyD/RXwngIvdo8bN87x/+eee05ly5Yt6EUWCVu2bNGiRYskSQEBAXrttdcKdHkhISEFOn94F08EKF5Y39ZjhR/APj4+nCu8jH3b+1q2bKnIyEhvh5GjKlWq6K+//vJ2GHAD+3bxUZzWtZX7Afi9g+LI2fGJHAWFzczbXELMOUlSZGSkGjdu7OVonDNrHkAOheKqOP32B8ygwIvdX375pePHSr9+/XJNcrds2eL4f7NmzRQQEFCg8ZlRSkqKRo0a5XiH2TPPPKPw8HDvBgUAAFDMRUZGKiIiwtthAIDp0Q8AAChK7LY0SZLNZiMfcBM5FACgMBTKY8ztdrvLV+f17dvXMe6aNWtUtWrVggzNlKZOnaqjR49Kkq699lo99dRTBb7MuLi4Al8GCpePj4/jCrILFy44Lp5A0cT6tjYrrC+73c65wgvYt80l4/v38fVVcKUwL0djFH8uSnabjX3VIti3i4/s1nVxuBPRqv0AHENRXOR2LrLCuYnfPUWLFbY58gD3kUOhOCHPA9zjybzY6+/sdsadpLioOXDggD777DNH+4033iiUq9o58BZtdruddVyMsL6txwrri+3K+1gH3pfx/QdXCtMrK3d5ORqjcR2a6uLZM2wnFsQ6Kz5Y1zkzSz8A6wjFkbPjkxX2BY6rRYsV1iV5gPvIoVBcsV0BhcvX2wE4Y4YE1xtsNptGjRql1NRUSVL37t3Vpk0bL0cFAAAAAEDBKq79AAAAAACA/DFlsbu4XvEyZ84c7dy5U1L67fvDhg3zckQAAAAAABS84toPAAAAAADIH1MWu4ujy5cv64MPPnC0hw0bpgoVKngvIAAAAAAAAAAAAAAwMVO+s7s4SklJUWJioqM9atQojRo1KsdpMl/5vmzZMi1fvtzR7tatm95++23PBgoAAAAAAAAAAAAAJkCx26TS0tLcnsZutxums9lsngwJAAAAAAAAAAAAAEyDx5gDAAAAAAAAAAAAACyHO7tNomzZsjpw4IBb02zatEmPPvqoo929e3eNHz/e06EBAAAAAAAAAAAAgOlwZzcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALKdQHmPu4+MjSdqxY4ciIiJcns7d8a/WqlWrPE0HAAAAAADyh34AAAAAAEBhKLR3dtvtdr344osFNv7VfHx8tG/fvjxNCwAAAAAA8o9+AAAAAABAQSu0YrePj4/sdrtL42VwZXwAAAAAAGA+9AMAAAAAAApaoRW7JWMCWxDjSyTGAAAAAACYBf0AAAAAAICCVODF7qpVqxb0IoqtNm3a6MCBA94OAwAAAAAAB/oBAAAAAACFpcCL3WvXri3oRQAAAAAAAJOgHwAAAAAAUFh8vR0AAAAAAAAAAAAAAADuotgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMsp4e0AAAAoaO3atVNUVJS3w8iWmWND3nhqm/Px8ZGPj48kyW63y26353ueVwsLC9PatWs9Ok94R0LMOUnpx5Prr7/ey9E4x/YGAACKOrPnnufOnVNaWpr8/PxUqVIlb4djYObvzczMngeYeb2a+bsz875q5tiuRv4JFC8UuwEARV5UVJTOnDnj7TBQjLDNobDZbWmSJJvNxrYHAADgJVbJA/jNWHSQB+SdFb47YgMA11DsBgAUGz6+vgquFObtMLK4eJbkoKgy6zYXfy5KdpvN22GgAJhxm2N7AwAAxY0Zf5NJ/+aeZoyPvDh/zLhOJWusVzN+d1bYV80Ym0T+CRRXFLsBAMVGcKUwvbJyl7fDyGJkyzB+iBdRZt3mxnVoaolOB7jPjNsc2xsAAChuzPibTPo39zRjfOTF+WPGdSpZY72a8buzwr5qxtgk8k+guPL1dgAAAAAAAAAAAAAAALiLYjcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALIdiNwAAAAAAAAAAAADAcih2AwAAAAAAAAAAAAAsh2I3AAAAAAAAAAAAAMByKHYDAAAAAAAAAAAAACyHYjcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALIdiNwAAAAAAAAAAAADAcih2AwAAAAAAAAAAAAAsh2I3AAAAAAAAAAAAAMByKHYDAAAAAAAAAAAAACyHYjcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALIdiNwAAAAAAAAAAAADAcih2AwAAAAAAAAAAAAAsh2I3AAAAAAAAAAAAAMByKHYDAAAAAAAAAAAAACyHYjcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALIdiNwAAAAAAAAAAAADAcih2AwAAAAAAAAAAAAAsh2I3AAAAAAAAAAAAAMByKHYDAAAAAAAAAAAAACyHYjcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALIdiNwAAAAAAAAAAAADAcih2AwAAAAAAAAAAAAAsh2I3AAAAAAAAAAAAAMByKHYDAAAAAAAAAAAAACyHYjcAAAAAAAAAAAAAwHIodgMAAAAAAAAAAAAALIdiNwAAAAAAAAAAAADAcih2AwAAAAAAAAAAAAAsh2I3AAAAAAAAAAAAAMBySng7AOQsLi5OBw8e1PHjxxUXFye73a5y5cqpatWqat68uYKDg70dIgAAAAAAAAAAAAAUOordJmOz2fTXX39p9erV+vPPP3Xw4MFsx/Xx8dHNN9+s/v37q23btoUYJQAAAAAAAAAAAAB4F8Vuk+nQoYOOHz/u0rh2u11//PGH/vjjD3Xq1EljxoxRUFBQAUcIAAAAAAAAAAAAAN5HsdtkYmJisgwLDw9X06ZNValSJZUsWVKRkZHauHGjIiMjHeP88MMPOnv2rD777DOVLFmyMEMGAAAAAAAAAAAAgEJHsdukqlWrpgceeEDdu3dXlSpVsvw9LS1NX3/9tcaNG6fk5GRJ0pYtW/TBBx9o+PDhhR0uAAAAAAAAAAAAABQqit0mU7VqVfXr10/dunWTn59ftuP5+fmpd+/eqlq1qp555hnZbDZJ0pw5c9S/f3+FhYUVVsgAAAAAAAAAAAAAUOh8vR0AjJYsWaKePXvmWOi+Wtu2bdWpUydHOzU1VWvWrCmo8AAAAAAAAAAAAADAFCh2m0yJEu7fbH91sVuSdu/e7alwAAAAAAAAAAAAAMCUKHYXATVr1jS0z50756VIAAAAAAAAAAAAAKBwUOwuAi5dumRo5+XucAAAAAAAAAAAAACwEordRcCBAwcM7SpVqngpEgAAAAAAAAAAAAAoHBS7i4Dly5cb2jfddJOXIgEAAAAAAAAAAACAwsHzri1u8+bN2rx5s6MdHBysW2+91e35+Pj4eDIsmMDV65T1W/SxvnPGd5J/Pj4+fI9usMp3xXp1D99V/rC9/YvzdvHBurYe1hOKi9yOT1bYF8z428Js8QBAceWNcwS//QHvodhtYUlJSRo1apRh2GOPPabAwEC35xUSEuKhqGBG5cqV83YIKESs76z4gZl/Pj4+nCvcYJVtzozrtWXLloqMjPR2GE6ZNS6rMOP2Zgact4sP1rU1mPU4Zebz49mzZ5WWliY/Pz9VrlzZ2+EYmDk2ydzxmXV7u5oZf1tYJQ8AgKIqIeacpPTzWOPGjb0cjXNVqlTRX3/95e0wLMPMv4Mlc/+ey1ActjmK3Rb2xhtv6NixY4527dq19eSTT3ovIAAAgHyKjIxURESEt8MAAMBUrHB+tNlspo3RzLFJ5o8PAACrsNvSJHFuLUqs8DtYYpvzNordFvXll19q6dKljnZAQIDee+89lSxZMk/zi4uL81BkMAsfHx/H3SMXLlyQ3W73ckQoSKzvnPF95J/dbudc4QarbHNmXK8Z352Pr6+CK4V5ORqji2fPeDsESzPj9uYtnLeLj+zWtdnuRMS/zHqcssL5kdjcZ+b4rPC7x4y/LTinA4A5mPHcGn8uSnabzZTnLzMz8+9gydy/58y+zXkyL6bYbUErV67U+PHjDcPGjBmTr8dy8GO8aLPb7azjYoT1nRXfR/6xXbnHKt+VGddrRjzBlcL0yspdXo7GaGTLMNltNm+HYVlm3N7MgO+l+GBdW4NZ15EVzo/E5j4zx2eF3z1mPK6aLR4AKK7MeG4d16GpLp49Y8rzl5mZ+XewZO7fc8Vpm/P1dgBwz8aNG/Xyyy/LdlXC8eKLL6p79+5ejAoAAAAAAAAAAAAAChfFbgvZtWuXnn32WaWkpDiGPfHEE3r66ae9GBUAAAAAAAAAAAAAFD6K3RZx8OBBPfXUU0pMTHQMe+CBBzRs2DAvRgUAAAAAAAAAAAAA3kGx2wJOnDihxx9/3PAC+Q4dOmjMmDHeCwoAAAAAAAAAAAAAvIhit8lFRUWpf//+io6Odgxr27atJkyYIF9fVh8AAAAAAAAAAACA4olqqYnFxMSof//+ioiIcAxr3bq1PvroI/n7+3sxMgAAAAAAAAAAAADwLordJpWQkKAnn3xSR44ccQxr2rSppk+frlKlSnkxMgAAAAAAAAAAAADwPordJnT58mU988wz2rt3r2NYvXr1NHPmTAUFBXkxMgAAAAAAAAAAAAAwB4rdJnPlyhX997//1ZYtWxzDwsPD9cUXX6hcuXJejAwAAAAAAAAAAAAAzINit4nY7XaNGDFCv/zyi2NYtWrVNGvWLFWqVMl7gQEAAAAAAAAAAACAyZTwdgD41+nTp/Xdd99lGXbXXXe5NZ9q1app9erVngwNAAAAAAAAAAAAAEyFYreJ2O12p8PS0tLcmo+74wMAAAAAAAAAAACA1fAYcwAAAAAAAAAAAACA5XBnt4lUr15dBw4c8HYYAAAAAAAAAAAAAGB63NkNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAyynh7QCA3LRr105RUVHeDsOpc+fOKS0tTX5+fqpUqZK3wzG4OrbQ0FDZ7XZvh+Rg5u9NMnd82cXm4+MjHx8fSZLdbvfK+jbz92bWY4gVJMSck5T+HV5//fVejsa5sLAwrV271tthWIqZ1yv7a9Fj5u3tahxL3GPm3+gZWKcAAAAAABR9FLthelFRUTpz5oy3w8iRzWYzbYw2m02nT5/2dhhOmfl7k8wdH7GhsNhtaZJYr0UN6xWFie2taLLCb3QAAAAAAFD0UeyGZfj4+iq4Upi3wzC4eDa9g4/Y3GPm2CRzx0dseZMRG/LOjOs1/lyU7Dabt8OwNDOuV/bXosuM25vEsSS/zLheWacAAAAAABQfFLthGcGVwvTKyl3eDsNgZMsw2W02YnOTmWOTzB0fseVNRmzIOzOu13EdmlIYzSczrlf216LLjNubxLEkv8y4XlmnAAAAAAAUH77eDgAAAAAAAAAAAAAAAHdR7AYAAAAAAAAAAAAAWA7FbgAAAAAAAAAAAACA5VDsBgAAAAAAAAAAAABYDsVuAAAAAAAAAAAAAIDlUOwGAAAAAAAAAAAAAFgOxW4AAAAAAAAAAAAAgOVQ7AYAAAAAAAAAAAAAWA7FbgAAAAAAAAAAAACA5VDsBgAAAAAAAAAAAABYDsVuAAAAAAAAAAAAAIDlUOwGAAAAAAAAAAAAAFgOxW4AAAAAAAAAAAAAgOVQ7AYAAAAAAAAAAAAAWA7FbgAAAAAAAAAAAACA5VDsBgAAAAAAAAAAAABYDsVuAAAAAAAAAAAAAIDlUOwGAAAAAAAAAAAAAFgOxW4AAAAAAAAAAAAAgOVQ7AYAAAAAAAAAAAAAWA7FbgAAAAAAAAAAAACA5VDsBgAAAAAAAAAAAABYDsVuAAAAAAAAAAAAAIDlUOwGAAAAAAAAAAAAAFgOxW4AAAAAAAAAAAAAgOVQ7AYAAAAAAAAAAAAAWA7FbgAAAAAAAAAAAACA5VDsBgAAAAAAAAAAAABYDsVuAAAAAAAAAAAAAIDlUOwGAAAAAAAAAAAAAFgOxW4AAAAAAAAAAAAAgOVQ7AYAAAAAAAAAAAAAWA7FbgAAAAAAAAAAAACA5VDsBgAAAAAAAAAAAABYDsVuAAAAAAAAAAAAAIDllPB2AMhdXFyctm3bpsjISCUkJKhy5cqqXr26WrRoIT8/P2+HBwAAAAAAAAAAAACFjmK3iR09elQTJ07UL7/8otTU1Cx/Dw0NVa9evTRgwAAFBAR4IUIAAAAAAAAAAAAA8A4eY25S3377rXr06KHVq1c7LXRLUnR0tKZMmaJevXrp1KlThRwhAAAAAAAAAAAAAHgPd3ab0Pr16zVixAjZbDbHsPDwcLVp00YhISE6ceKE1q1bp8uXL0uS9u3bpwEDBmjhwoUKCgryVtgAAAAAAAAAAAAAUGgodpvM2bNnNXToUEeh28fHR8OHD1e/fv3k6/vvjfgxMTH673//q82bN0uSDh06pNGjR2vSpEleiRsAAAAAAAAAAAAAChOPMTeZ6dOn69KlS4724MGD9dhjjxkK3ZJUoUIFzZw5U9ddd51j2IoVK7Rv375CixUAAAAAAAAAAAAAvIVit4mcO3dOixYtcrRr1qypp59+OtvxS5YsqVGjRjnadrtd06dPL9AYAQAAAAAAAAAAAMAMKHabyJo1a5SamupoP/jgg/L3989xmptvvlm1a9d2tNevX6/ExMQCixEAAAAAAAAAAAAAzIBit4msXbvW0O7QoYNL091zzz2O/ycnJ+v333/3aFwAAAAAAAAAAAAAYDYUu01k69atjv9XqlRJNWrUcGm6Fi1aGNpbtmzxaFwAAAAAAAAAAAAAYDYUu00iKipK8fHxjnbDhg1dnrZRo0aG9uHDhz0WFwAAAAAAAAAAAACYEcVukzhy5IihXbVqVZenrVSpkuHd3kePHvVYXAAAAAAAAAAAAABgRiW8HQDSRUVFGdpVqlRxeVofHx+FhYXp1KlTTufl6jzMysyxAQC8z8fHx3TnCrPFAyB3hXksuXo5Vj1eWCFuM5wfisK6Lm7Mup7MGhfgTWY4zmdmtngAAOZjxvOXmfFd5V9x2OZ87Ha73dtBQJo3b57eeOMNR/uVV15R//79XZ6+S5cuOnDggKO9a9culSxZ0pMhek316tUVEREhH19fBVcK83Y4BhfPnpEkYnOTmWOTzB0fseWNmWOTzB2fmWOLPxclu80mX19fXXPNNd4Ox+DMmTOy2Wym/N4kc69XYssbYss7Mx9LJOnGG2/U1q1bvR1GFmY+zmWs02rVqjkuCAasjrw4b8wcm2Tu+Mwcm5nP3WY+P0rmXq/Eljdmjk0yd3zEljdmjk0yd3xmPn9J5J55ZYVtrjjkxtzZbRKJiYmGtruF6szjX7p0qcgUu4v6TggAAAAAQE7IiwEAAADAOd7ZbRLJycmG9tXv4HZFQEBAjvMDAAAAAAAAAAAAgKKEYrdJZL4LOzU11a3pU1JScpwfAAAAAAAAAAAAABQlFLtNokyZMoa2u3dmZx4/MDAw3zEBAAAAAAAAAAAAgFlR7DaJzMXuS5cuuTX91eOXKFGCO7sBAAAAAAAAAAAAFGkUu00iLCzM0I6KinJ5Wrvdbhg/87wAAAAAAAAAAAAAoKih2G0S1113naEdERHh8rTnzp0zvOO7du3aHosLAAAAAAAAAAAAAMyIYrdJVK5cWcHBwY72/v37XZ523759hjbFbgAAAAAAAAAAAABFHcVuE7nxxhsd/z9//rxOnDjh0nTbtm0ztFu1auXRuAAAAAAAAAAAAADAbCh2m8hdd91laK9cudKl6VatWuX4f8mSJXXLLbd4NC4AAAAAAAAAAAAAMBsfu91u93YQSHfu3Dndcccdjvdv16xZUytWrJC/v3+202zcuFH9+/d3tO+++25Nnjy5oENFEXPixAnt27dPkZGRstlsCgsLU926dVWvXj1vhwYUC2fOnNHu3bt1+vRpJSYmqmTJkqpUqZKuvfZaNWjQQAEBAXmaL/u2ORXU+kbxwb4NFL7U1FQdPHhQBw4c0IULF5ScnKygoCCFhoaqcePGqlatWr6Xwb4NwKw4PgGeRR8AAPZXwLNKeDsA/KtSpUp68MEHNXfuXEnpB7xPP/1Uzz33nNPxk5OTNXbsWEfbx8dHAwcOLJRYUXDatWuniIiIPE37008/qVatWi6Pv379ek2fPl3bt293+vf69evrySefVJcuXfIUD4Ds2Ww2LV++XLNnz9bevXuzHc/f318tWrTQ008/rdtuu82lebNvm48n1/epU6eyPA3GVWFhYfr111/zNC2y6tu3rzZv3pzv+QwaNEiDBw/OdTz2baDwRUVFacaMGfr222918eLFbMerW7eu+vTpo169esnPz8+tZbBvA3AHfQaANdEHAJgTeT1QNFDsNpkBAwZo2bJlunTpkiRp8uTJKlOmjPr16ydf33+fOh8TE6P//ve/OnTokGNYx44d1ahRo0KPGdZjt9v19ttva/bs2TmOd+DAAb388sv65ZdfNH78eO42LAAF2VFBQcy8Tp06pRdffFE7duzIddzU1FRt3rxZzZo1yzXRZd82p4Ja3yg6ypQpk+Pf2be9r6A7QDhnm9PPP/+skSNH6sKFC7mO+88//+iNN97Q0qVLNXXqVFWuXDnXadi3AZgVxyfAs+gDAIo+8nrAuyh2m0xYWJgmTZqkgQMHymazyW63a/z48VqwYIFuuukmhYSE6Pjx41q3bp0uX77smK5OnToaM2aMFyNHQfDx8TFc5ODK+K6YOHFilhPrDTfcoCZNmsjPz08HDhzQH3/8oYy3HPzwww/y8/PTe++953rwAJz6559/9Nhjjyk6OtoxzMfHR02bNlWDBg1UsWJFJScnOx5rdvLkSZfnzb5tPgW5vjP4+vq6fPwvUYKffp7k6+vr9h2ckpSWlub4v4+Pj+6+++4cx2ffLjpy6wCBeWzYsEFDhgxxvGJKSj+G3nTTTapXr55Kly6t2NhYbd++Xfv373eMs2vXLvXr10+LFi1SUFBQjstg3waQX/QZAOZHHwBgbuT1QNFAj6cJ3XHHHRo3bpxef/11JSUlSZKOHTumY8eOOR2/YcOGmjJlSq6dKbCebt26afz48R6d57p16zRjxgxHu2zZsvroo4908803G8bbt2+fBg4cqMjISEnS8uXLdeONN+qhhx7yaDz4V0F1VGSgIOZ9MTExevLJJw1Jbvv27fXKK6+oevXqTqc5ePCglixZouDg4Bznzb5tPgW5vq/21ltvqUePHvmOF+778ssv3Z5m9erVGjRokKPdsmVL1ahRI9vx2bfNobA6QK5eHuds77l8+bJGjRplKHS3atVK7777rqpWrZpl/I0bN+rll192HO+PHDmijz76SCNHjsx2GezbADyBPgPA3OgDAMyPvB4oGnzsGZeKwHSOHDmiiRMnav369YaOlgyhoaF68MEH9cwzz/A4iyLk6sdad+/e3aOJq91uV5cuXXTw4EFJ6Z2uc+bMUatWrZyOf/ToUXXt2lXJycmS0re5n3/+WaVKlfJYTMVdQa7vzI9EHTduHAUxL3vxxRf1/fffO9rPPPOMhg4dmu/5sm+bU0Gtb/Ztaxs4cKDWrl3raL/99tvq2bOn03HZt60tcwdIq1at9NVXXzkdl/3aXFasWGE4XoeHh2vp0qU53pn/999/q2fPnrpy5YokKTAwUH/++afTPI19G0B+0GcAWAd9AEDRRF4PmI/rtxCi0NWuXVtTp07Vb7/9pmnTpmn06NF68cUXNW7cOH311Vdav369nn/+eQrdcNnPP//sOLFKUteuXbM9sUrStddeqyeeeMLRjo6O1qJFiwo0RqCo+uOPPwxJ7l133eWRJFdi3zajglzfsK6YmBj99ttvjnaZMmXUoUOHbMdn37a2JUuWGNrdu3f3UiRw18aNGw3t/v375/oI+gYNGhguWLh06ZJ2797tdFz2bQBmxfEJ8Bz6AICiibweMCeK3RZQvnx53XXXXXr44Yf19NNPq0ePHmrVqlWeHqWI4m3lypWG9sMPP5zrNA899JBhW8s8DwCu+fTTTx3/9/f31yuvvOKxebNvm09Brm9Y13fffWd4Ws/dd9+twMDAbMdn37YudztAYC5RUVGGdvPmzV2a7oYbbjC0z54963Q89m0AZsXxCfAc+gCAoom8HjAnit1AMXHlyhX9+uuvjvY111yjpk2b5jpdWFiYoYNv+/btiomJKYgQgSLr5MmT+vPPPx3ttm3b5vguH3ewb5tPQa5vWNvSpUsN7Zzu9GXftjZ3O0BgLjabzdB29ZGBpUuXNrSdvXedfRuAWXF8AjyHPgCg6CKvB8yJYjdQTBw8eFAXL150tFu0aOHytFePm5aWpm3btnk0NqCoW7Fihex2u6PdqVMnj82bfdt8CnJ9w7oOHDig/fv3O9rVqlVTmzZtsh2ffdva3OkAgflUr17d0D5z5oxL02W8QzdDrVq1sozDvg3ArDg+AZ5DHwBQNJHXA+ZFsRsoJg4fPmxoN2zY0OVpGzVqZGgfOXLEIzEBxcWOHTsM7ZYtW3ps3uzb5lOQ6xvWlbn42bVrV6d3fWZg37YudztAYD633Xabof3jjz/mOk1aWppWrVrlaFerVk3169fPMh77NgCz4vgEeA59AEDRRF4PmFcJbwcAIHt///23hg4dqn379uncuXOSpJCQEFWvXl2tWrVS+/bt1aBBA5fmlfmEWLVqVZfjuOaaa3KcF4Cc7dmzx/H/sLAwVa5cWZJ0/PhxLVmyRBs2bNCZM2eUlJSk8uXL69prr9Utt9yirl27qmLFijnOm33bfApyfTuzatUqrVixQocPH1ZsbKxKliypkJAQ1a1bV61atdK9997riAHeceXKFX333XeGYbnd6cu+bV3udoDAfO644w7Vr19fBw4ckCQtXrxY7dq105133ul0fLvdrnfffVfHjh1zDHvuuefk65v12nL2bQCeRJ8BYE70AQBFD3k9YG4UuwET279/v+HOIElKSEjQqVOn9Oeff2ry5Mm6/fbb9eqrrzp9TOLVoqKiDO0qVaq4HEfmcSMjI12eFq7zZEeFMxTEvCM+Pl5nz551tGvUqKErV67o448/1vTp03XlyhXD+ImJiYqIiNCGDRs0efJkPfnkk3r22WezLZSwb5tLQa9vZ3755RdDOykpSXFxcTp27JhWr16tCRMm6P7779dLL73EO4O95LfffnMc16X0Oztq1qyZ4zTs29aUlw4QZzhne5efn5/ef/999enTR3FxcUpLS9Ozzz6rXr16qVu3bqpXr55Kly6t2NhY7dixQ7NmzdKmTZsc0z/00EPq2bOn03mzbwPwJPoMAPOhDwAomsjrAXOj2A1Y3K+//qqePXtqwoQJuuOOO7IdLzEx0dB2p+CRedzM84JneLKjwhkKYt4RFxdnaFeqVEkjR47Ut99+m+u0iYmJ+uijj/T333/r/fffV4kSWU/b7NvmUtDrOy9SUlI0b948/fnnn/r444/zdPxA/uTl/c3s29aUlw4QZzhne991112nRYsW6X//+582b94sm82m+fPna/78+dlOU6lSJT3//PPq1atXtuOwbwMobPQZAIWLPgCgaCKvB8yNYjdgQmFhYbrrrrv0f//3f6pfv74qVqyogIAAxcXFaf/+/fr555+1dOlSpaSkSEq/avT555/XnDlz1KxZM6fzzHxCDAgIcDmekiVL5jgvFB5XOyrygoJYwYiPjze0f//9d8ewUqVKqX///urYsaNq1aql1NRUHThwQF9//bWWL18uu90uSfrpp580adIkDRs2LMv82bfNpaDX99Xq16+v9u3b68Ybb1SdOnUUEhIiu92uc+fOaefOnVq2bJl+/fVXx/hHjhzRU089pYULF6p8+fIe/uTIzoULF7Ru3TpHu3Tp0urQoUOu07FvW1NeOkDygnN24ahZs6bmzJmjJUuWaPz48bpw4UK24zZq1Eivv/56tr/FM7BvA/AE+gwA86IPACh6yOsB86PYDZjMW2+9pVatWjm9ejM0NFShoaG6/fbb9cQTT2jQoEE6ePCgJCk5OVlDhw7VypUrnZ44k5OTDW13Tq6Zx718+bLL0yJ3BdFRcTUKYt6V+cdoRpIbEhKiWbNmqWHDho6/lSpVSi1btlTLli116623avjw4bLZbJKkzz//XF26dMnyKHv2bXMp6PWdMa8FCxaoRYsWTmOoXr26qlevrk6dOmn9+vV6+eWXHQWa48ePa+zYsZo4caJHPi9y9/333zuO35J09913KygoKNfp2LetJ68dIFfjnG0uhw8f1ltvvaXff/8913H37dunBx98UG3bttWYMWOyfUQh+zaA/KLPADA3+gCAooe8HjA/X28HAMDo5ptvdunRtbVq1dKsWbNUtWpVx7CIiAgtWrTI6fiZrwa7+gSdm8zjlipVyuVpkbO33npLa9eu1Wuvvab//Oc/qlmzpgIDA+Xv7+/opBgzZoy+//571atXzzFdRkdFTusxoyC2fPlyPf/887rlllsUFhamkiVLqlSpUo5i2IwZM/Tpp5+qXLlyjmkzCmLIv+x+yI4ZM8aQ5GbWpUsX9e3b19G22+36/PPPs4zHvm0uBb2+JSkoKCjbQndmbdu21bRp0wznlR9++MHR6YmCt2zZMkPb1Tt92betJ68dIBLnbDP6/fff1bNnT0eh29/fX3369NHcuXO1ZcsW7dmzRxs2bNC0adN0++23O6Zbv369unfvrsOHDzudL/s2gPyizwAwN/oAgKKHvB4wP4rdgIVVrFhRL730kmHYihUrnI5bpkwZQ9udk2vmq9Ayzwt5V1AdFRIFMbNw9j6e6667Tvfcc0+u0z799NPy9/d3tH/55RfHVd4Z2LfNpaDXd160bNlSPXv2dLTtdrt+/PHHfM8XuTt8+LB27drlaFerVk033XSTS9Oyb1tPXjtAJM7ZZnPixAkNGjRISUlJkqSyZctq7ty5eu2119SyZUuVLVvWcWHiXXfdpRkzZuj11193TB8TE6OBAwc6pr8a+zaAwkSfAVD46AMAihbyesAaKHYDFnfPPfcY7hrasWOHSx1rly5dcnkZmcfl5Ood7nRU5AUFsYLhLNG98847XZq2UqVKatq0qaN94cIFHTp0yDAO+7a5FPT6zqv777/f0N64caNH5oucZX5/c9euXeXj4+PStOzb1pKfDpC84JxdsCZMmGB4BOmYMWNyfXVM79691bt3b0f7+PHjmjdvXpbx2LcBFDb6DIDCRR8AULSQ1wPWQLEbsLgSJUqoSZMmjvaVK1d09uzZLOOFhYUZ2pGRkS4v48yZM4Z2du8gRMFztaMiryiIeV7FihUNV2ZLUt26dV2e/urH10tSVFSUoc2+bS4Fvb7zqnHjxoa4Tp8+7ZH5Ins2m03Lly83DHPnTl/2bWvJTwdIXnHOLhjx8fH6+eefHe2aNWu6/O71p59+2tD+9ttvs4zDvg2gsNFnABQu+gCAooO8HrAOit1AEVCxYkVDOzY2Nss41113naHtTqEj84m4du3abkQHT3K1oyKvKIh5nr+/v2rWrGkYdvW7VnOTedwLFy4Y2uzb5lLQ6zuvfH19FRIS4mg7O0/As37//XdDx9SNN96YZdvICfu2deS3AySvOGcXjN27dystLc3RbtWqlcsXLlStWlXVq1d3tP/5558sjx9k3wbgDfQZAIWHPgCg6CCvB6yDYjdQBGS+s7dkyZJZxsl8ct23b5/L89+7d6+hzcnVu1zpqMgrCmIFo06dOoa2O+/oyTxu5v2bfdt8CnJ958fly5cLZL5wLj/vb5bYt60kvx0gecU5u2CcP3/e0A4NDXVr+qvHt9lsiouLM/ydfRuAN9BnABQu+gCAooG8HrAOit1AEXDy5ElDu0KFClnGqVu3rsqWLeto79ixw+X5b9++3fF/Pz8/3XDDDe4HCY9xpaMiPyiIeV7r1q0NbXceTZ35Ss7y5csb2uzb5lOQ6zuvYmNjFR8f72hnvmgGnpWQkGB4DHLp0qV17733ujUP9m3ryG8HSH5wzva8zN/j1d+xKzL/Tsv8bj32bQDeQJ8BULjoAwCsj7wesBaK3YDFnTlzRv/884+jXbFiRVWuXDnLeCVKlNDtt99umG7nzp25zj8qKsowXosWLZwmxig8rnRU5BUFsYLRvn17wyNQt23b5tJ0drvd8EPYz89PDRo0MIzDvm0+Bbm+8+rXX381tD01Xzi3YsUKQ4HsP//5j4KCgtyaB/u2NXiiAySvOGcXjMz7y+HDh12eNjU1VSdOnHC0AwICFBwcbBiHfRtAYaPPACh89AEA1kdeD1gLxW7A4qZNmya73e5o33LLLdm+VzBz5+u8efNynf+CBQsM7y3s0KFDHiOFJ7jaUZFXFMQKRpUqVQxXYK5du1YxMTG5TrdhwwbD+3yaNm3q9Ic1+7a5FPT6dldqaqpmzJhhGHbrrbfme77I3tKlSw3tHj165Gk+7Nvm54kOkLzinF0wGjVqZHgX+ubNmxUdHe3StGvWrFFiYqKj3bx5c6fjsW8DKEz0GQCFjz4AwPrI6wFrodgNmERKSoqOHDni1jSLFy/W119/7Wj7+Pjo0UcfzXb8u+66S/Xq1XO0v/32W23ZsiXb8Y8eParPPvvM0Q4NDdUDDzzgVozwLHc6KtxFQaxgDR482PH/5ORkvfnmmzmOf+nSJb311luGYX379nU6Lvu2+RTU+o6Kisry/tec2Gw2jR492nCRTGhoqDp16uTyPOCeEydOGO7cqFq1qm666aY8zYt92/w81QHiLs7ZBadMmTJq06aNo52cnKyxY8fmOl1sbKzeffddw7B27do5HZd9G0Be0GcAWAt9AIB1kdcD1kOxGzCJy5cv67777tMLL7ygDRs26MqVK9mOGx0drTfeeEMjR440DO/WrZuaNGmS7XQ+Pj564YUXHG273a5nn31WGzduzDLuvn371L9/fyUnJzuGDRo0SKVKlXLnYyEbBd1RQUHMfG6++WbdcccdjvaKFSs0fPhwwyNoM5w4cUKPPfaYjh496hjWpEmTbB+Ny75tPgW1vnfv3q127drpnXfe0b59+3KM4e+//1b//v21ZMkSw/AXXnghyztk4TmZv++uXbvm+aIk9m1z81QHCOds83nuuecM7ZUrV+r555/P9g7vXbt2qU+fPoqIiHAMq1Spknr16uV0fPZtAHlBnwFgLfQBANZFXg9Yj4/96lsEAXjNxYsX1apVK0c7KChIDRs2VO3atVWuXDn5+/vr4sWL+vvvv7Vjxw6lpqYapm/ZsqW++OILBQQE5LqsCRMmZLkb6IYbblDTpk3l6+urAwcO6I8//jDcQdylSxe99957+fyUyHDx4kXddNNN6tChg3r06KGbbrpJJUqUcDpudHS0pk2bluUxN927d9f48eOdTvPzzz9r2LBh6tWrlzp37qxGjRplG8vff/+tt99+W5s2bTIMHzduXKHdoVZcXLhwQb169TIksMHBwbrttttUs2ZNpaam6uDBg/rzzz8N+3iFChW0ePFiVa1aNcf5s2+bS0Gs759//tlQhAkNDVWjRo1Uo0YNBQcHy263KyYmRjt37tSBAweyTP/EE09o2LBhHv6kyGC323XXXXcZCl4//fSTatWqla/5sm+b0wcffKDp06c72gMHDtSQIUPcng/nbHN6//339fHHHxuGBQQEqHXr1qpXr57KlCmjuLg47dixQ3v27DGM5+/vrxkzZujmm2/OcRns2wDcQZ8BYD30AQDWQ14PWBPFbsAkMieu7ujdu7dGjBjh8lVeNptNb7/9tubMmePS+B07dtT48eNVsmTJPMWHrAq6o4KCmHmdOnVKzz//vPbu3evS+LVr19Ynn3yimjVr5jou+7b5eHp9Z963XVWqVCmNGDFCvXv3dntauO7PP/9Uv379HO0bb7zRpfdx5YZ923w82QHCOdu8pkyZomnTphnel5ebChUqaPz48Wrbtm2u47JvA3AHfQaANdEHAFgLeT1gTRS7AZNISUnR1KlTtWnTJu3du1cpKSk5jl+mTBm1b99ejz76aI6PIcvJ+vXrNW3aNO3YscPp3+vVq6cnn3xSXbt2zdP8kb2C7qigIGZuqamp+vzzz7Vw4UJDoeRqlStXVr9+/fTII4+4/bgi9m1z8eT6PnnypD7//HNt3rxZR44ckc1my3HZoaGh6t69ux5++GFVqVIlX58DuRsxYoThHc5jx4716Lu12LfNw5MdIJyzzW3fvn364osvtGrVKsPjBDOrWLGi7r//fvXr108VK1Z0axns2wBcQZ8BYF30AQDWQV4PWBPFbsCErly5oqNHj+rEiROKjIzUpUuXdOXKFQUHB6ts2bKqW7eu6tevLz8/P48s7/jx49q7d6/Onj2rtLQ0hYWFOZaBglHQHRUUxKzBbrdr9+7dOnr0qKKjo+Xj46MKFSqoYcOGatCgQb7nz75tLp5e34mJiTp06JBOnTqlc+fOKTExUT4+PgoODlaFChV0/fXXq0aNGgXwSeBt7Nve58kOEM7Z1pCSkqJ9+/bp8OHDunjxoi5fvqzAwECVL19ejRo1Uu3atfP8Hr8M7NsAXEWfAWBN9AEAyMD+CngWxW4A8LKC7qigIAYAgDVwzgYAAAAAAHAPxW4AAAAAAAAAAAAAgOX4ejsAAAAAAAAAAAAAAADcRbEbAAAAAAAAAAAAAGA5FLsBAAAAAAAAAAAAAJZDsRsAAAAAAAAAAAAAYDkUuwEAAAAAAAAAAAAAlkOxGwAAAAAAAAAAAABgORS7AQAAAAAAAAAAAACWQ7EbAAAAAAAAAAAAAGA5FLsBAAAAAAAAAAAAAJZDsRsAAAAAAAAAAAAAYDkUuwEAAAAAAAAAAAAAlkOxGwAAAAAAAAAAAABgORS7AQAAAAAAAAAAAACWQ7EbAAAAAAAAAAAAAGA5FLsBAAAAAAAAAAAAAJZDsRsAAAAAAAAAAAAAYDkUuwEAAAAAAAAAAAAAllPC2wEAAOBJaWlpWrNmjVauXKk9e/bo3LlzSkxMlN1ulyRVq1ZNa9eu9XKUgHUkJiZq3759On78uOLj45WYmKiSJUsqMDBQVapUUbVq1RQeHi5/f39vhwoAAABA5MWAp5EXA4C5UewGAAtr166dIiIichzH19dXwcHBCg4O1nXXXacmTZro7rvvVv369QspysITHR2twYMHa/v27d4OBbA0m82mFStW6Ouvv9aWLVtks9lyHD8gIED169dXq1atdOutt6pVq1YKCAgopGgBAABQnJEXG5EXA55BXgwA1uFjz7ikDwBgOa4k9dlp1aqV3njjDV133XUejso70tLS9PDDD+ea0HMFO5Czw4cPa8SIEdq1a1ee5zF16lS1b9/eg1EBAAAAzpEX/4u8GPAM8mIAsBbu7AaAYmrLli3q3r27Jk2aVCR+fK9Zs8aQ0FeuXFnPPfecmjdvrqCgIMfwEiU49QHZ2b9/v/r376+4uDjDcF9fX9WqVUvh4eEKDAxUamqqLly4oCNHjujs2bPeCRYAAADIJ/JiAJmRFwOA9fDLBgCKkEmTJqlZs2aGYTabTXFxcdq7d6+WLVumHTt2OP6WnJysF154QXPnzlWTJk0KOVrPWrlypaE9depUNW3a1EvRANaTmJioZ555xpDQBwUF6amnnlLPnj0VGhrqdLro6Gj9/vvvWr16tX799VelpKQUUsQAAABAVuTF/yIvBtxDXgwA1kSxGwCKkEqVKql69epZhtesWVNNmzZV79699dVXX2ns2LHKeItFcnKyxo0bp3nz5hV2uB61Z88ex/+rVq1KQg+4aebMmYqMjHS0K1asqDlz5uT6SMfQ0FB169ZN3bp1U0xMjBYuXKiQkJACjhYAAABwjrw4HXkx4D7yYgCwJl9vBwAAKFyPPPKIHnvsMcOwrVu3at++fV6KyDPOnTvn+H9YWJgXIwGs6fvvvze0R4wY4fa7CytUqKCBAweqZcuWngwNAAAA8CjyYgDOkBcDgDVR7AaAYmjAgAHy9/c3DNuwYYOXovGMxMREx/8zfzYAOTt79qyOHz/uaPv7+6tDhw5ejAgAAAAoWOTFAK5GXgwA1sVjzAGgGAoJCVHjxo21fft2x7DDhw+7NG1ycrK2b9+uM2fOKCYmRna7XRUqVFDNmjXVvHlzlSjh2VNLRESE9u/fr7Nnz+rChQsqW7as2rdvn+Uq9YzHz3lCQkKCtm3bpqioKMXGxiogIEAVKlTQddddp0aNGsnHx8djy5Kk+Ph4bdu2TWfPnlVMTIxKliypVq1a6frrr3dp+itXrmj79u06deqUoqOj5e/vr9q1a6tVq1YqU6ZMjtNevHhRW7du1fHjx3X58mWFhISobt26atGihXx9835N3Llz53To0CGdPHlSFy9eVGpqqoKDg1W+fHk1btxYNWvWzPO8s2O327Vr1y4dO3ZMZ8+elb+/v0JDQ3XjjTeqSpUqHllGbGysdu7cqejoaMXGxkqSgoODVbNmTTVo0EAVK1bM87xPnjypvXv3KiYmRhcvXlRwcLAqVaqk5s2bF/hdGWfPnjW0Q0JCFBAQUKDLdCY5OVk7duzQmTNnFBsbq8uXLyswMFBVq1ZVvXr18rzdXLlyRTt37tTJkycVExOjtLQ0VahQQdWqVdMNN9zg8c+ampqq7du36/Tp0zp37pxsNpvq1q2rO++8M9dpDx06pIMHDyomJkYJCQkqV66cYzsuX768R+MEAAAozsiLc0ZeTF6cHfLigkVeTF4MwH0UuwGgmMqc5GQkKNnZuXOnpk+fro0bN+ry5ctOxwkKClKnTp303HPPuZyE1K9f3/H/1q1ba86cOZKkn3/+WTNnztSOHTuyJOxhYWF6//33tXTpUqfz3Lx5s2G+GapVq6a1a9dmG8u2bds0depUbdq0SampqU7HqVixorp27aqnn37a5R/Yffv21ebNmx3tAwcOSJL++ecfvf/++/rtt9+UkpJimObRRx91JPVLlizRK6+84vjbuHHj1KNHDyUkJOiTTz7RkiVLDI+ryxAYGKjHHntMAwcOzNLZEhERoffff18rV650+lkrV66sl156SV27dnXpM6alpWnz5s1atWqVNm7cqGPHjuU4fpUqVdSnTx/16dNHwcHBLi0ju+/BZrPpyy+/1FdffaVTp045nbZly5YaNmyYmjVr5tKyrpaamqqlS5dq3rx5+vvvv3PsQKpXr546duyo+++/X6GhobnOOzExUXPmzNHixYsNV5Bn1rBhQw0YMEAdOnTweKeSlL7+rpaQkKC0tDT5+fl5fFnObNiwQZ9//rm2bNmSZV+4WpUqVXTXXXepV69eTvfxzCIiIjR16lT99NNPio+PdzpO6dKl1bZtWz3//PMuP55u8uTJmjJliqM9e/ZstWnTRnFxcfrwww+1YsUKxcXFGaZp0KBBtkl9bGysPvvsMy1fvlxRUVFOx/H19VWLFi00aNAg/d///Z9LcQIAACBn5MVZkRf/i7z4X+TFBY+8mLwYQN5R7AaAYsrVK76TkpL06quvZnlvkTMJCQlauHChli9frvHjx+fpcU9XrlzRa6+9pm+++cbtafMqNTVVr732mhYvXpzruOfPn9fnn3+uRYsW6d1331W7du3ytMz58+dr3LhxSk5OztP0J0+e1JNPPplj8nzp0iVNmTJFO3bs0PTp0x1X6W7YsEFDhgzJNsmR0q9oHjZsmI4cOaKhQ4fmGs/s2bM1fvx4l+OPjIzUpEmTtHDhQk2ePNnlq/UzO3/+vIYMGWLoNHHmr7/+0sMPP6xx48apc+fOLs9/586dGjp0qCIiIlwa/+DBgzp48KCuXLmiwYMH5zjub7/9puHDh+v8+fO5znf//v0aMmSI/u///k8fffSRyx0hrqpQoYKhnZSUpD/++EO33XabR5eT2blz5/TCCy9o06ZNLo0fGRmpuXPn6p9//nF0AGZn7ty5Gj9+fI6dBFL6Z125cqVWr16tgQMH5rresrN161YNHTo026Q8O8uWLdObb76phISEHMez2WzaunWrHnvsMXXp0kVvvfWWV+4yAAAAKErIi/9FXpwVeXE68mLyYleRFwPwFordAFBMZf7h6exq7JiYGD355JPau3evYXipUqXUsGFDVa5cWX5+fjpz5oz27NnjuBI6KSlJQ4YM0dixY3X//fe7Fdc777xjSOivvfZahYeHq0yZMoqOjtbu3bvdml9uUlNTNWDAAP3++++G4SVKlFCTJk1UpUoVXb58WYcPH9aJEyccf4+Pj9egQYP09ttvq1u3bm4tc/Xq1XrjjTccHSuVKlVSw4YNVa5cOcXFxTmucM/OxYsX9dhjj+nkyZOS0u8caNasmcqXL6/4+Hjt3LnTcPXshg0bNGHCBI0cOVJbt27VwIEDHYlO5cqV1ahRIwUFBencuXPavn27oaPh448/VpMmTdS+ffscY7LZbIZ2xiPjqlSpouDgYKWlpSkmJkYHDhwwxBYREaF+/fppyZIlbj+K6/LlyxowYIBjmwgICFDjxo0VFhYmm82mw4cP69ChQ47xU1NT9corr6hu3bpq0KBBrvP/4YcfNGLEiCxJYUBAgK6//nqFhoYqICBAcXFxOnz4sM6cOeNy7F9//bVef/31LFeOV6tWTXXr1lVQUJAuXbqkv//+2zDfP/74Q3369NH8+fMVFBTk8vJyU6NGDYWGhio6Otox7LXXXtOMGTNcvqrbXQcPHtSTTz6Z5Vjk4+OjevXqqWrVqgoKClJCQoJOnDiho0ePZtnOsjNlyhRNnjw5y/C6deuqVq1a8vPz06lTp7Rv3z7HfpiWlqYpU6YoKipKY8eOdeuznDx5Uu+9955j2y5TpowaN26s0NBQJSYmZtv59uGHH2ratGmGYT4+Prr22mtVq1YtBQYG6uLFi9qzZ49iYmIc4yxfvlzR0dGaOXOmxx+RCQAAUJyQF6cjLyYvzg55MXmxq8iLAXgTRwEAKIYuXLigPXv2GIZl/uFus9n0wgsvGBL6ypUra8iQIercuXOWKycvXryomTNnasaMGbLZbLLb7RozZowaN27sUgIlSXv37nVciXzHHXdo2LBhWeJKSEhQSkqKbrjhBg0aNMgx/K677nL8v1mzZpo0aVKW+Tv78fv+++8bEnofHx/17t1bgwcPznJV79atW/X666/r4MGDktKTgNGjR6tBgwYuf0ZJGj58uOx2u+rUqaNXXnlFt9xyi+ERXGlpaTleBTtt2jTHe9pefvllde/eXf7+/o6/p6am6pNPPjEkNV999ZW6du2qIUOGKCUlRXXq1NGrr76qm2++2TDv2NhYjRo1SqtXr3YMGzdunO66665cHxMWGhqqbt266Y477sj2PXU2m01//PGHJk6cqH379klK7yB56aWX9PXXX+c4/8w++ugjxcbGqlSpUho8eLD69OmT5V1su3bt0ksvveR4FFpqaqrGjRunL7/8Msd579y5M0tCX7VqVQ0ePFgdO3ZUqVKlskwTGRmpVatW5fo5Nm7cmCWh79y5s5555hnVqVMny/ibNm3S2LFjHdvdwYMHNXr0aKfbeH507txZn3/+uaMdERGhrl27qkOHDurUqZNat26twMBAjywrLi5OAwcONGznZcqU0WOPPaZHHnkky74npe/769at07Jly3K8Kn39+vVZEvo2bdpo1KhRqlu3rmF4RESExo8fr59++skxbNGiRWrSpIl69erl8ud5++23denSJZUrV05Dhw5Vz549sxwjMzrhMixdutSQ0Pv6+urhhx/W448/rqpVqxrGtdvtWrNmjd566y2dPn1aUvp29OGHH+rFF190OU4AAAD8i7z4X+TF5MXOkBeTF5MXA7AKH7urz+sBAJhOu3btDI+Ryng/Tm7ee+89zZw50zBs8eLFaty4saM9c+ZMvffee4729ddfr88++yzX93GtXLlSQ4YMcVwV2qZNG82ePTvb8Z29X6hXr15644033HoHU3bvOMvJ33//rW7duhkeXffqq6+qb9++2U5z6dIlPf7449qxY4djWJMmTXJ8vFzmd5NlTPPFF1+49NitzO/kkqTg4GDNmzdP9erVy3a6119/XfPnz3e0y5UrpwsXLqhJkyaaNWtWtldAX7lyRT169DBcST9r1qwsHQBXi4qKUoUKFQydCzlJSUnRwIEDtWHDBsew3LZfZ99DmTJl9OWXX6pp06bZTnf69Gndd999unTpkqT0jptVq1apVq1a2cbWoUMHw751ww03aPr06QoJCcn1s9ntdp0/f16VKlXK8rdLly7p7rvvdrxLzsfHx6U7PS5duqQnnnhC27dvdwz76quv1KpVq1zjcVVMTIy6deuWbYeSn5+f6tSpo6ZNm6pJkyZq1qyZ6tWrJ19fX7eX9eKLLxoeARkaGqoZM2aoYcOGLk0fHR3t9N1vKSkpateuneFK/A4dOmjSpEk5vmftzTff1FdffeVoly5dWmvXrnXauSBlfTeZJIWEhGjOnDk57pMZIiIi1LFjR8d7HgMCAjR16lTdfvvtOU53/vx59e7d29FJ5efnp1WrVqlGjRq5LhMAAKCoIi92Ph/y4nTkxenIi11DXkxeDMCa3D8KAwAsbf78+frss88Mw1q0aGFI6C9fvmwYJzg4WB9//HGuCb2U/gO6d+/ejvamTZuyPO4tJ9ddd51effVVtxL6vPriiy8MCf0999yTY0IvSYGBgXr//fcNV0rv3r1bW7ZscXm5AQEBmjhxYr7eL/W///0v1+Th6aefNnyPFy5ckL+/v95///0cH/VVokQJPf7444ZhGzduzHFZYWFhLif0Uvp3MG7cOMM03333ncvTZ3jllVdyTOil9CvPr74a2W635/gurGXLlhkS+rCwME2bNs2lhF5KT9SdJfSStGDBAkdCL0lPPPGES480zNjurr4qOvN+nF8VKlTQp59+qrCwMKd/T0tL04EDB7Ro0SKNHj1aXbt21U033aTnn39eP//8s+Nxjbk5cuSIVqxY4Wj7+fnpww8/dDmhl+Q0oZfSt6GrE/pq1app3LhxOSb0kjRy5EjD8pOSkjRv3jyX45HSt0VXEnopfd1lJPQZ0+aW0EtSxYoVNWHCBEc7LS0t17sxAAAAkBV58b/Ii50jLyYvdoa8OGfkxQC8hWI3ABQh586d06lTpwz/Tpw4od27d2vhwoXq3bu3Xn/9dUMiGxAQkOWq4O+//97wHpx+/fqpcuXKLseROSFcu3aty9M+9thjWR5zVBBSUlIMiYUkDR061KVpq1atqoceesgwbMmSJS4v+5577sn26mlXXHPNNerSpUuu41WtWlXh4eGGYffee69LV7vecssthvb+/fvditEVlStXVosWLRztq6/OdkVYWJh69Ojh0rh33nmnoZ3xqDhnrr7qX5KGDBniUoeWK66+SrpMmTJ69tlnXZ72mmuu0b333uto//777zk+tiwvGjRooGXLlumBBx5w6Z1XFy5c0KpVq/Tcc8+pU6dOhsf8ZWfhwoWGd4x16dJFN954Y77izrBs2TJDe8CAAVke4eeMn5+fhgwZYhi2dOlSl5fr6j4pSYmJiVq8eLGjXaNGjSzHk5w0bdpULVu2dLTdOb4CAAAUB+TFriMvzhl58b/Ii7NHXpyOvBiAN/HObgAoQl544QW3xg8ICNCECRPUrFkzw/A//vjD0O7YsaNb861Ro4aqVq3qeIfOX3/95fK0V79jrCDt2rXLkBA1adJE1157rcvTd+vWzfAep23btrk8bfv27V0e15lbbrkl1ytyM4SHh+vo0aOO9m233ebSdKGhoSpTpowSExMlpT8mKq+SkpJ06dIlJScnK/PbU8qWLev4/5EjR2S3212+e+HWW291KfGUsr577+pOq6vFxcUZOjCCg4N13333ubSM3Bw5csSxT0hS27Zt3X7XV5s2bfTtt99KSu+Y2rVrlyHB84QKFSpo7NixevbZZ/Xdd99p1apV2r9/vyERd+b48eMaNGiQ+vbtq5EjR2b7GLfMd0O4k9DmJDU1Vbt27XK0S5QooU6dOrk8/W233aYKFSo4to1Tp04pKioq2yv6r9auXTuXH1u3detWw9Xr99xzj9uPvGvTpo3juBoREaHTp09neZ8ZAABAcUVe7Dry4pyRF6cjLyYvJi8GYHYUuwGgmGrRooXGjBnj9PFCW7dudfzf399fAQEBOnXqlFvzL1eunCOBOXnypEvTVKlSJdt3AXnanj17DO2rr6R2Rb169RQUFKSEhARJ0rFjxxQfH+/SI9gaNWrk1rIyy5yg5iTzY9ncmTY4ONiR1Gd8ztzYbDZt2rRJq1at0u7du3X48GElJSW5PG1CQoLLj7GrU6eOS+NJxs4DSYqPj3c63o4dOwwdD82aNfPYHRVX71dS+lXP7u5XmZO/EydOeDypz1C1alUNGDBAAwYMUHx8vLZv3669e/dq//792rlzpyIjI51ON2fOHAUGBjq9IyQhIUEHDx50tMuUKaMmTZp4JN5Dhw4ZkuU6derk+FjCzPz8/NSsWTOtW7fOMWz37t0uJfXuPGou83ZQuXJlt7eDzI9GPHnyJEk9AABAHpAXkxfnhryYvJi8mLwYgPlR7AaAIs7X11eBgYEqW7asrr32WjVt2lR33313tj9CbTabzp4962inpqbm+4rruLg4l8arWLFivpbjjsxXMGd+rFlufHx8FB4ebugcOH/+vEsJaX47LjInqDnJfIV3Xqe9cuVKruP/9ddfGjNmjA4cOODyMjJztWNEcu+zZE6Csvs8V7/XSpLq1q3r8jJykzkJ/vzzzw13QeTFhQsX8jW9q4KDg3X77bcb3p91/PhxrVixQl999ZXhfWuS9Omnn6pz585ZOl7Onz9v6DS59tprXb4bIzeZ77Jwd5/OiOfqpD67Ox0yc+fYlXk7ePvtt/X222+7PL0zhbUdAAAAWBV5sXPkxe5NS16cf+TF5MUSeTEAz6PYDQBFyOzZs9WmTZt8zePChQu5PpbJXZcuXXJpPHcfXZUfmX8Eu5pI5jSNqz+s3bmq1hl3H+10NVcfheaulStX6qWXXlJqamq+5uPOtpef7yE7sbGxhrY7HQe5cbVzyx2u7lsFoVatWho4cKAeffRR/e9//9OPP/7o+JvNZtOsWbM0duxYwzSZvwNPfr8XL140tD2xT7u6ztw5dhW17QAAAMBsyItdR17sWeTFuStq+RB58b/IiwF4E8VuAIBBfpMyq8j8jixPJLsFlTCbXUREhEaMGGHYdipWrKjOnTurZcuWqlmzpipXrqzSpUurZMmShu9pxIgRWrp0qTfCdokn12lB7FuZt2NvCAwM1IQJE3TixAnt3bvXMfz333/PdVpPfr9W2aeL6nYAAABQlJAX5x15MXlxTopqPkRe7J6iuh0A8B6K3QAAg5CQEEM7PDxcq1at8k4wBSjz58zuXVU5yTyNJ6/GtZIZM2YY3j925513atKkSSpTpkyu07r6zrPCUr58eUPbk4/ByjzviRMn6r777vPY/L2pRIkSevTRRzV8+HDHsNOnT+vy5csqVaqUY1hBfr/lypUztD2xT2eepydkPvYsWLDA7XcjAgAAoGCRF7uOvDgdeXHe5k1eTF4skRcDyD/PP+cEAGBpAQEBhh+yERERRfKq9szvBzt27Jhb09vtdh0/fjzHeRYXa9ascfy/TJkymjBhgksJvSTDe/DMoHLlyob2oUOHPDbvzO+vcnebMztn7zvMnLRXrFjRcFX40aNHlZaW5pHle+L7PXr0qKFdEPt0pUqVDO2ith0AAAAUBeTFriEv/hd5sWvIi8mLJfJiAJ5HsRsAkMXVV1OmpqZq8+bNXoymYDRu3NjQ3r59u1vT//PPP4arXcPDw4vlFexJSUmGxLxVq1Yuv3stOTlZ+/btK6jQ8qR58+aGd57t2LFDKSkpHpl35quUN2zY4JH5moWfn1+WYZnf9RUYGKgGDRo42omJidqzZ49Hll+nTh3D1fL//POPW3dIpKWladeuXYZhTZo08UhsVyvq2wEAAEBRQV6cO/LidOTFrivq+RB5sWuK+nYAoPBR7AYAZHHrrbca2l9//bWXIik4TZo0UUBAgKO9a9cut64k/fbbbw3tG264wVOhWcrFixcN7cxJXE6+++47090dUa5cOTVq1MjRjo+P14oVKzwy7+uvv97wuLIdO3bo4MGDHpm3GWS+2j84ONjpnQw333yzob1gwQKPLN/f319NmzZ1tK9cuaIff/zR5ek3bNig8+fPO9rVq1dXWFiYR2K72s0332zoAFm7dq1huQAAADAH8uLckRenIy92HXlxOvJi8mIAnkWxGwCQRdeuXQ1XY69cuVIbN270YkSeV7JkSd17772GYR988IFL00ZGRmrevHmGYd27d/dUaJaS+d1NR44ccWm6+Ph4TZs2rSBCyreHH37Y0P7ggw888g4tX19f9enTx9G22+0aO3asrly5ku9551dCQkKWxw+6K3Pn30033eR0vN69exuS2uXLl2vHjh35WnaGrl27Gtoff/yx4b152UlLS9OHH35oGFZQ+3S5cuXUuXNnRzsxMVHvvPNOgSwLAAAAeUdenDPy4n+RF7uOvDgdeTF5MQDPotgNAMiibNmyeuKJJwzDnn/+ef31119uzSctLU0//fST4uLiPBid5/Tv39/wnqQff/wxS7KeWWJiooYMGaLExETHsOuvv16tW7cusDjNrFSpUgoPD3e09+3bl+vjp5KSkjR06FBFREQUcHR506VLF9WsWdPRPnPmjJ577jmXE3u73a5z5845/dvjjz9uuIp906ZNeuWVV5ScnOxWjKdPn9b69evdmiYncXFxuvfeezVs2DD9888/bk8/efJk/f7774Zh9913n9Nxa9asaUhqr1y5oueff14HDhxweXnR0dFOh3fp0kWhoaGO9qlTp/Tqq6/KZrPlOL/x48dr7969jnapUqXUu3dvl+Nx16BBgwx30Hz77bd677333H5P26FDh7RlyxZPhwcAAACRF+eEvNiIvDgr8uJ05MXZIy8G4EkUuwEATj355JOGx7ZdvHhRjz76qN54440cr1JOTU3Vtm3b9N577+k///mPBg8e7Nb7gQpTo0aN9NhjjxmGjRkzRmPHjlVsbGyW8bdv364+ffoY3mMWEBCgt956q8BjNbPMdwL897//1fLly7MkUna7XX/88Yd69eql3377TZJUoUKFQovTVSVKlNCkSZNUsmRJx7AtW7aoe/fuWrZsWbYJeGRkpGbPnq3OnTtr/vz5TscJCgrS+++/rxIlSjiGLV++XN27d9fy5ctzTO7Pnj2rxYsX65lnnlH79u3dehSZK9LS0vTtt9/qvvvuU8+ePTV79mz9888/stvt2Y6/ceNG9evXT1OmTDH8rXXr1urQoUO2y/rf//6nWrVqOdpRUVF66KGHNGXKFMXExDidJiEhQd9//72eeOIJvfDCC07HCQgI0JgxYwzDMqY5fPhwlvFPnz6t559/XrNnzzYMHzFihCpWrJht/PlVo0YNvfnmm4ZhM2fOVJ8+fbR27doc72o4deqU5s6dq0cffVSdOnXSn3/+WWBxAgAAFHfkxeTFriIvTkde/C/y4pyRFwPwpBK5jwIAKI5KlCihDz74QE899ZQjiU1LS9O8efM0b948hYWFqW7dugoJCZHNZlNCQoIiIyN19OhR071vKidDhw7Vvn37HD+M7Xa75syZo/nz56tp06aqUqWKkpOTdejQoSyPs/L19dVrr72mhg0beiN003j88ce1ePFinT17VlJ68vXyyy/r3XffVePGjRUUFKQLFy5o//79hiuPO3furBIlSmjp0qXeCj1bTZo00TvvvKNhw4YpJSVFkhQREaHhw4dr9OjRuv766xUaGip/f3/FxcXpyJEjOn36tGP6e+65J9t533zzzRo3bpz+97//OeZ9+PBhvfzyyxo5cqQaNmyoypUrq0yZMkpMTNSFCxd05MiRQn1/1Z49e7Rnzx5J6e8Yu+6661S+fHkFBwcrOTlZ0dHROnjwoNMOuzp16mjSpEk5zr9s2bKaNm2annjiCUVGRkpKvztk8uTJmjp1qurXr69rrrlGgYGBSkhI0MmTJ3X06FHHFd453THSrl07DRw4UNOnT3cM++OPP9SxY0fVq1dP4eHh8vX11alTp7R3794snRY9evQo0KvXM3Tr1k3R0dGaNGmSowNsx44dGjhwoEqXLq2GDRuqUqVKKlmypC5duqTY2FgdPnw4y/sAAQAAUHDIi8mLXUVeTF58NfJi15AXA/AUit0AgGwFBwdrzpw5mjhxombPnm14lFBUVJSioqJynUfp0qUNjyUym4CAAM2YMUOjRo3SsmXLHMOvXLmibdu2ZTtdUFCQ3nnnHbVv374QojS3smXL6pNPPtGTTz5pSDyjo6O1bt06p9N07txZ48aN06hRoworTLfde++9qlKlioYOHaozZ844hicnJ+e4bbiiS5cuuvbaa/Xiiy8aOotSU1O1a9cul+Zx9fsD86t06dKqWrWqoWMiQ3x8vMvvDuvcubNGjhzp0p0JderU0TfffKMhQ4YYHgVps9m0f/9+7d+/3+X4MxsyZIgqVqyod955x9DJePDgQR08eNDpNL6+vnr66ac1ZMiQPC/XXU899ZTq16+vkSNHGjq8kpKSXN7GPLkdAAAAICvyYvJiV5AXu4+8mLxYIi8G4BkUuwEAOfL399eIESP08MMP67PPPtPq1auzfe9ShpCQELVu3Vrt2rXT3XffrcDAwEKKNm8CAgL0zjvv6IEHHtC0adO0efPmbK/Cr1Chgrp06aIBAwaY8lFj3tKoUSMtW7ZMEydO1A8//OD0+/Px8dENN9ygRx99NMdHeZlJixYt9NNPP2nhwoVasGCBDh06lO24Pj4+atSokTp27KgePXrkOu8mTZroxx9/1A8//KB58+Zp9+7dOT6my9fXVw0aNND//d//qVOnTmrUqFGePpMzFStW1Lp167Rv3z6tW7dOW7du1c6dO1161GL58uV1zz33qGfPnmratKlbyw0NDdXcuXO1bt06ff7559q2bVuO30H16tXVvn17Pfjgg7nOu2/fvrrjjjs0bdo0/fTTT9l+llKlSqlt27YaPHiw6tat61b8nnD77bdrzZo1+uabb7Ro0SL9/fff2T4iT0o/Jjdu3Fi33nqr7rvvPsO7AQEAAFAwyIuNyIudIy8mLyYvzhvyYgD55WPP6agBAIAThw8f1oEDBxQbG6v4+Hj5+fkpKChI11xzjWrXrq0aNWrIx8fH22HmWUJCgrZu3aqoqCjFxsYqICBA5cuX13XXXafGjRtb+rMVhosXL2rr1q06efKkEhMTVa5cOYWGhqpx48aqUqWKt8PLl6ioKO3cuVPnz5/XhQsX5Ofnp7Jly6pmzZpq0KCBypcvn+d5JyQkaOfOnYqMjNSFCxeUnJysMmXKKCQkROHh4bruuusUFBTkwU+TM5vNpoiICB07dkxnzpxRQkKCkpKSVLp0aQUFBalSpUqqX7++qlWr5rFlJiQkaNu2bYqKilJcXJxsNpvj2FKvXj1Vr149T/NNTU3Vzp07deLECcXGxiotLU0VKlRQtWrVdMMNNxjeQ+dtcXFx2rlzp86ePasLFy7oypUrKlOmjCpWrKjw8HDVrl1bpUuX9naYAAAAxR55sXU/W2EgL84b8mLyYom8GID7KHYDAAAAAAAAAAAAACzH19sBAAAAAAAAAAAAAADgLordAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALAcit0AAAAAAAAAAAAAAMuh2A0AAAAAAAAAAAAAsByK3QAAAAAAAAAAAAAAy6HYDQAAAAAAAAAAAACwHIrdAAAAAAAAAAAAAADLodgNAAAAAAAAAAAAALCcEt4OAPC2mJgY7dmzR1FRUYqPj9fly5dVunRpBQYGKiwsTNWrV1fNmjXl7+/v7VANNm3apEcffdTRbt26tebMmePFiKxr8uTJmjJliqM9aNAgDR48uFCWHRkZqRMnTuj06dOKi4vT5cuX5evrq7Jly6pSpUpq3LixqlSpUiixIG82bdqk77//Xjt27NDZs2cVHx+vtLQ0x9/HjRunHj16eDFCAAWhXbt2ioiIcLTXrFmj6tWrezEi8+jbt682b97saM+ePVtt2rTJdvwRI0Zo6dKljjbHTefc/V4BwB3kxfBmXgzrIy8Giify4uyRFxcM8mJkh2I3iqWYmBgtWbJEixcv1pEjR3IdPyAgQA0aNFDz5s112223qXXr1ipVqlQhRIqiZuPGjfrjjz+0fft2HThwQBcvXsx1mmrVqql79+7q1auXKleuXAhRZu3oyI6fn5+Cg4MVHBys8PBwNWvWTG3btlXTpk0LIUrvunDhgl5++WWtX7/e26EAxUrmZNoZPz8/BQQEqGTJkqpQoYJCQ0MVHh6uunXr6oYbblCDBg3k5+dXSBEDAGBO5MUwu4sXL+ree+/VuXPnDMOrVaumtWvXFvjyyYtzR14MeAd5MQAYUexGsbNkyRKNGzfOpSJjhpSUFO3atUu7du3S7Nmz1aJFCy1YsKAAo0RR9cYbb+jo0aNuTRMREaEpU6Zo1qxZeuGFF/Twww8XUHTuS0tLU1xcnOLi4nTy5En99ttvmjJlipo0aaLhw4erVatW3g6xQNhsNg0aNMhwJSEA80hLS1NSUpKSkpIUFxenI0eOaNOmTY6/ly9fXnfffbceeughNWrUyIuResb+/fv1888/O9oNGzZU+/btvRgRrnbx4kV9+eWXjnZwcLD69+/vvYAAQOTFsIb33nsvS6HbjMiLyYsBMyIvJi82E/JiFDSK3ShW3n77bcNBNTN/f38FBgbq8uXLunz5crbj2Wy2gggPxVzJkiVVpkwZJSUlOd3+EhISNGbMGJ04cUKvvPKKFyJ03e7du/Xoo4/q+eef18CBA70djsctX748S0LfqlUr3XTTTSpfvrx8fX0dw5s3b17I0QHITWxsrBYuXKiFCxeqbdu2GjlypMLDw70dVp7t37/fcNdR9+7dSepN5OLFi4b1U61aNZJ6AF5FXgwr+Ouvv7Ro0SJvh5Ev5MXkxYCZkRejMJEXo6BR7EaxMXPmzCwJfYkSJdSpUyfde++9aty4sUJDQx1/S0lJ0eHDh7Vnzx79+eefWrdunS5dulTYYaOICg8PV+vWrdWyZUvVq1dP4eHhKl26tOPvsbGx2rlzp5YsWaJVq1YZpp01a5Zq166tXr16FVq8ISEhGjJkSJbhGVew7927Vxs3blRSUpLjbzabTR988IHKlSunPn36FFqsheGbb74xtAcOHOj0+wFQ8O644w7dcccdWYYnJibq4sWLio+P19GjR7Vr1y4lJCRkGW/9+vX6888/NXr0aN1///2FEDEAAN5DXgwrSElJ0ejRo2W3270digF5sRF5MWAe5MUAijuK3SgWzpw5k+U9SzVr1tS0adNUt25dp9MEBASoYcOGatiwoR544AElJydr3bp1+vLLL7mCHXn2xBNPqHnz5tludxnKly/v+KH622+/afDgwYaEecKECerUqZOCgoIKOmRJUmBgoHr37p3jOOfPn9dbb72lH374wTB83LhxateunapUqVKQIRaaK1euaNeuXY52QECAnnrqKS9GBBRvjRs3zvX4JKV3NB44cEALFizQt99+azimJicn63//+59iY2Nd3p8L4z2RVjVnzhxvh1Ak8b0CyC/yYljFjBkzdPjwYUnp75y9/fbbtW7dOi9HRV58NfJiwFzIi82H/K1g8L0iO765jwJY3/z58w0n7zJlyujzzz/PteB4tZIlS6pDhw6aP3++Jk2aVBBhohh44IEH3NruJOm2227TqFGjDMMuXrxoimT/ahUrVtSkSZPUtWtXw/CUlBTNmDHDS1F53qlTp5ScnOxoh4eHKzAw0IsRAXCFr6+vGjZsqDfeeEPr1q3TXXfdlWWcCRMmaOXKlV6IDgCAgkdeDCs4evSoPv74Y0e7T58+uv76670YkXvIiwGYGXkxgKKKYjeKhcxXmfXo0UM1atTI8/yqVauW35AAt3Tv3l0VK1Y0DNuyZYuXosnZ6NGjFRwcbBi2evVqL0XjeRcvXjS0y5Yt66VIAORV+fLlNXXqVA0aNCjL30aNGqWYmBgvRAUAQMEiL4YVjB49WikpKZKk0NBQyz4Wm7wYgNmRFwMoSih2o8iz2Ww6cuSIYVjLli29FA2QN76+vmratKlh2NmzZ70UTc6CgoLUsWNHw7CoqCgdP37cSxF51uXLlw1tX19OpYAV+fj4aPDgwbr33nsNwy9evJjlEa8AAFgdeTGsYPHixdq8ebOjPXLkyEJ7dZenkRcDsALyYgBFBe/sRpEXGxurtLQ0wzBvX3F6/vx57dq1S+fPn1dsbKzsdrsCAwNVvXp11a9f32PvcEpKStK2bdt09OhRxcfHKygoSKGhoWrZsqUqVarkkWVI0smTJ7Vv3z6dP39eFy9eVHBwsCpUqKD69eurdu3aHluOJMXFxWnHjh2Kjo5WbGysAgICVKFCBdWqVUuNGzeWn5+fR5dnJpkfCWbmd+Q1b95cCxcuNAw7ffq0atWq5dL0p06d0v79+3X+/HnFxcUpMDBQFStWVIMGDTy+TWWIjY3Vzp07dfLkSSUkJMjf31916tTRHXfcYRjPbrd7fNkZ7zs7deqUYmJilJKSovLly6ty5cpq0aJFgR2zEhIStHPnTh07dkzx8fHy9fVV1apVdd9997k8D7vdrv379zvWlyRVrlxZzZs3V3h4eK7TX7lyRTt37tQ///yjuLg4lS5dWmFhYWrTpo3Kly+f14/mcObMGR06dEgRERGKj4+XzWZTuXLlVL58eTVp0kRVq1bN9zKyc/HiRW3dulXHjx9XUlKSypYtq7CwMLVu3dqj6zQtLU179+7VyZMnFRsbq/j4eJUuXVohISG67rrrVL9+fQUEBORrGd7YJwvL2LFjtWnTJsNV60uWLNGQIUMK9PfC+fPn9ffff+vkyZOKj49XamqqSpcureDgYFWrVk3h4eG65pprCmz5eZGcnKydO3fqyJEjunDhgqT0R3V27dpV/v7+BbrsgwcPat++fYqOjpaUfpypW7euGjVqVKDLLYpSUlK0fft2nTlzRjExMbLZbKpQoYLCwsJ0ww03qHTp0gWy3MI6JgJwjryYvNjsYmJi9O677zrat956a5ZisdWQF7uHvJi8OD/Ii/OHvNh15MVFA3lx0UOxG0Wej49PlmFRUVGFHkdiYqLmzp2r7777TgcPHswxMahVq5buvPNOPfDAA6pTp47byzp37pwmT56sZcuWZbnaVkr/Tlq3bq2XXnopy93Crrp8+bLmzJmjxYsX6+jRo9mOV716dXXt2lWPP/54vq7IXrlypWbNmqWdO3dmW+QNCQlRu3bt9Nxzz6l69ep5XpZZZd5uPdX5UxCcdRrFxsbmOE1CQoJmzZql7777TseOHct2vOrVq6tXr1569NFHVapUKZfiWbJkiV555RVHu3v37ho/frwkafv27ZoyZYr++OOPLNtWgwYNVKdOHafvMMqwefNm1a9f3+nfZs+erTZt2mQ77bFjxzR16lT98ssvWR4Dl8HPz08tWrTQ448/nmMcmW3atEmPPvqoo926dWvNmTNHknTo0CFNnjxZa9asUWpqqmG64OBgQ1Lft29fw90VGZ/JZrNpwYIFmjlzpiIiIpzG0KpVK40cOdLpj+5Lly5p5syZmjdvnuLi4px+7nvvvVfDhg1TWFiYy587KSlJ69at09q1a7Vp06Zcn4BQrVo1PfTQQ+rdu3eWxwzmJKdt6sSJE/rggw/0008/Zfl+pfTP1q5dO73wwgv5Soh37typzz77TH/88Yfi4+OzHa9UqVJq2bKlOnfurHvvvVclS5Z0af4FuU+aSVBQkHr16qXp06c7hiUlJWnVqlV64IEHsp2uXbt2hm1/zZo1uZ577Ha7vv32W82fP187duzINbbQ0FC1adNGHTt2zLL/Z94Gr7Z06VItXbo02/lefTzIcOrUKcMyqlWr5njc7ZkzZzRlyhT98MMPhne9Zrj77rsNSX12xw132e12LV26VJ988km222DNmjXVr18/9enTx+U7ivIbX077f4bM3+fVIiIisj1vZDhw4IDH496zZ4+mT5+u33//3el6lKSAgAC1adNGzzzzjFt3fJrhmAggZ+TF5MVmN27cOEdeEBAQoNGjR3s3IA8gL05HXkxeTF5sfuTF6ciLyYsl8mKr4hkzKPJCQkJUooTxuo5Vq1YVagzLli1Tu3btNGHCBB04cCDXK2CPHz+uWbNmqVOnTm4va+PGjerUqZMWLFjgNKGX0k+SmzZt0kMPPaQlS5a4vYzNmzfrnnvu0YQJE3JM6KX0k9rUqVP1n//8R+vWrXN7WZGRkerVq5f++9//avv27TnezRwXF6clS5aoQ4cOmjZtmtvLMrOYmJgsPwBvuukm7wTjAmfbuLMOtgzLli3TXXfdpcmTJ+eYPEjp29TEiRPVoUMH7dmzJ19xfvjhh+rdu7c2bNhQqHfK2+12TZo0SZ06ddLy5cuzTeil9KuT//rrLz377LPq27ev4yrxvFq4cKG6deumlStXOv1x5Yr4+Hg9/vjjeuONN7JN6KX098r36tVLP/30k2H4oUOH1L17d02bNs1pQi+lf+7vv/9ePXv21OHDh12KKzY2VjfffLOGDh2q7777zqVH/UdERDi2p61bt7q0nJx8//336ty5s3744Ydsv9+0tDStXr1aPXr00G+//eb2MmJiYvTMM8/owQcf1KpVq3JM6KX0TtgNGzZo+PDhmjFjhkvL8NY+6S29e/fOcoxav369R5cRExOj3r17a/jw4S4l9JIUHR2t77//XsOHD/doLO5Ys2aNOnbsqG+++SbbRLAgJCUlaeDAgXrllVdy3AZPnDihN998U71798738bGoSklJ0ciRI3X//ffr559/znE9pqSk6LffftPDDz+s559/XomJifladmEcEwG4hrw4K/Ji8/j999+1fPlyR3vAgAEu3/1sZuTFOSMvJi8mLzYX8uLskRdbH3lx0UexG0Wer6+vrr/+esOwX375RbNmzSrwZdvtdr3zzjsaPnx4tlfvlipVSuXKlfPI+402btyop59+2vAj2cfHR+XKlXP6qJ60tDSNHDlSGzdudHkZq1at0hNPPKHIyMgsf8tYlrPPEhMTo+eee06LFi1yeVmHDx/WQw89lO2Pn6CgIKePh0lNTdWHH36okSNHmvpR366y2+0aO3as4WRYtWpVtW/f3otR5ezcuXNZhoWEhGQZZrfb9f7772v48OHZXsUcEhLidPs9c+aM+vbt69b2e7WPPvpI06ZNM3RA+Pr6qly5cgX62L8rV67oxRdf1CeffKIrV65k+XtAQEC2d3ts3rxZvXr10okTJ/K07MWLF2v06NGGbcnHx0dly5bN0vmZnZSUFA0YMCDL9x4YGOj0ET8pKSl66aWXtH//fknpnZZ9+/Y1vKsuIwZn+3N0dLSeeuopl5KJK1euZDuev7+/QkJCVKZMGad/P3funPr166dNmzblupzsLFu2TC+99JKhQzVjm3L22ZKSkvTss8+63GkhSX///bfuv//+bDtJfX19FRISku2V5Ll1Kntzn/SmsLAwXXvttYZhriberkhJSVG/fv20fft2p38vXbq0ypcvn+326S2///6708QuODg4348AzIndbtfQoUOzbOcBAQFZXumRYceOHerXr5/hsXtIvxPlySef1OLFi53u/6VKlcp2u1u1apX69u2b5++0MI6JAFxHXkxebFaXL1/W66+/7miHh4fr6aef9l5AHkRenD3yYvLiDOTF5kFe7Bx5sfWRFxcPPMYcxcLdd9+tnTt3GoaNGzdOq1ev1iOPPKK2bdsWyIl0ypQp+vzzzw3D/Pz81LVrV3Xo0EE33nij48e73W7XiRMntGvXLq1Zs0br169366qh6OhoDRkyRCkpKfL391fPnj3VtWtXNWnSxHHgPHTokBYsWKC5c+c6kl273a5Ro0Zp1apVuSYyBw4c0EsvvaSUlBTD8C5duqhXr15q3ry5SpQo4XhPzjfffKNFixY5lpWWlqbXXntN1157ba6PAElMTNSzzz6rM2fOGIZnPLbq1ltvVZkyZWS323Xq1Cn98MMP+vTTT3Xp0iXHuIsXL1bNmjX1zDPPuPYlmtCZM2f01ltvafXq1Y5hJUqU0Ntvv12gP6jyy9mPYWfvgPrss8/08ccfG4bVqFFDjzzyiG677TbVrl3bcVXpqVOn9PPPP2vmzJmOd9MkJiZqyJAh+vbbb916rPuuXbu0bNkySVLJkiX18MMP67777lPDhg3l6+urtLQ0HTlyRH/99ZdCQkIMnS/Hjh0zdAqGh4erf//+Tpfj7N1cH330kX744QfDsHLlyunpp59Whw4dHI97SkhI0K+//qqZM2dq7969jnFPnjyp5557TosXL3ZrGzh9+rTGjBkjKf041KNHD3Xr1k3NmjWTv7+/bDabTp06pTVr1uQ4n48++ki7du2SJDVp0kRPPfWUbrnlFsexLCIiQl9//bVmzpzp6LRITk7Wm2++qVmzZmnQoEGKiYmRj4+POnbsqF69eqlFixaOz7Jv3z59/PHHhjuNIiIi9PHHH2vo0KEufVZ/f3+1bt1at99+uxo3bqx69eoZ3nuTmJioffv26ccff9SiRYuUnJwsKb1D8MUXX9R3333n9nvRDh48qB9++EF2u12lS5fWI488oo4dO6pBgwby9fWV3W7X3r179cUXX+j77793TJeSkqLXXntNX331Va7LOHv2rJ588knH9p+hVq1a6tu3r2699VbVrFnTcSxPSEjQ/v37tWnTJq1atUoHDx7MdRne2ifNoHnz5jpy5IijHR0drZiYGFWoUCHf8/7iiy+yfP//+c9/9MADD6hZs2aGTs/U1FQdO3ZM+/fv16+//qr169c7TcaaN2/uODbt2LHDcUzL+Fu3bt2yjady5cq5xnzp0iUNGzbMsR/fc8896tWrl1q2bKmSJUvKbrfr7Nmz+vHHHz3+XrKFCxc6frcFBwfr6aefVqdOnVStWjVJ6XfRrFu3Th9//LEhAfznn3/culOjIF197oiLi9MHH3xg+NuQIUMKJY7XXnstS2dllSpV9Mwzz6h9+/YKDQ2VlH4H0Lp16zR9+nRDx/GePXv08ssva+bMmTneiZZZYRwTAbiPvJi82IymTp1qOPeMHj3a1LmuO8iL//1bZuTF5MXkxeZEXmxEXpw/5MXkxYWJYjeKhd69e2vWrFlZfgj99ddf+uuvvxQQEKDrr79ezZo1U7NmzdSkSRPVqFEjX8vcsGGDpk6dahhWo0YNTZs2TfXq1csyvo+Pj2rVqqVatWqpc+fOunDhglsHtIzHplWqVEnTp093+s6xOnXq6NVXX1WjRo0M7484efKkfvnllxzfe5Rx1e3VCb2/v78+/PDDLNP5+fmpadOmatq0qe69914NHDjQcVVpWlqaXn75Zf3www85dqSMHz8+y+NZBgwYoCFDhhiukPfx8VGNGjX0zDPPqGvXrurfv79husmTJ+v22293+m4kMzh//nyWR1ldvnxZ0dHR2r17t7Zu3aq0tDTH34KCgvTOO+/o5ptvLuxQXZaQkKAff/zRMCwsLCzLY+h27Nih999/3zDs4Ycf1ogRI5wmq9WrV1f//v3VpUsXPffcc9q2bZuk9B9Lr732mj755BOXY8z4EVilShV9/vnnuu666wx/9/PzU926dVW3bl1J6ceQDJs2bTIk9ZUrVzb8PSfbtm3L8mOzfv36+vzzz7O8zy0oKEgdO3bUPffco7feektz5851/O3gwYOaNGmSRowY4dJypfQETEr/gfzxxx9n6Vjz9fVVzZo19dhjj+U4n4yE/vHHH9ewYcOy/MirVq2ahg4dqtq1a2vYsGGO4Vu3btULL7yggwcPqmTJkpo4caL+85//ZJl/o0aN9NFHH+nVV1813PHy9ddfa9CgQTkmDwEBARo8eLB69+6tihUrZjtemTJl1LJlS7Vs2VJ9+/bVU0895fgRGx0drblz52rQoEE5fg+ZZXS8hIeHa8aMGapZs6bh7z4+PmrcuLEmTpyo8PBwTZkyxfG3LVu26O+//1aDBg2ynb/dbteQIUOynMeeeeYZDR482OkdCEFBQWrVqpVatWqlQYMG6c8//8yxs9ib+6QZOHtXVEREhEeS+qsTbkkaPny4Hn/8cafj+vv7O44/Xbp0UVJSkuGCpwy1a9d2vMepZMmShmVce+21Lh+XspNxB4O/v78mTpyoe+65x/B3Hx8fhYWFZdupmR8ZCX14eLi+/PLLLB1EwcHB6tKlizp06KBhw4YZzjm//vqrvv32W3Xt2tXjcbkjKCjIsQ5OnTplSOoDAwPzvX5c8cMPPxgSZkm65ZZb9NFHH2W5U6p8+fLq0aOHOnbsqJdeesmwzW3YsEFfffWV+vbt6/KyC/qYCCBvyIvTkRebx4EDB/TFF1842p06ddItt9zixYg8h7w4e+TF5MXkxeZFXmxEXpw/5MXkxYWJx5ijWAgMDNTkyZOzfXxNSkqKtm/frlmzZmno0KFq3769br31Vg0dOlSLFi3K9b0vzkyYMMFwxVlYWJgWLFjgNKF3ply5cnruuefcWqa/v7+mTZvmNKG/Wo8ePXTHHXcYhq1cuTLHaX766Sf9888/hmFjxozJsSNAkm6++WZNmDDBMOz06dNaunRpttNERUVleWda9+7d9cILL+T4WLtrrrlGX3zxheFEdeXKlSxXY5rJyZMn9frrrxv+jR8/Xp999pk2b97sKHQHBQXpoYce0vfff2/qx5dL6dtF5n3GWczvvvuu4XFlvXr1cukq/goVKmj69OmOKxml9EcwHjhwwK04/f399cknn2RJ6AvS9OnTDY8QrFixor744ossCf3V/Pz8NGrUqCwJ8Lx58/L0CJ2JEyfmegdJbjp27Kjhw4fneDVj165d1aZNG8OwjB+Jr776qtOE/mojRoxQcHCwox0TE6MtW7bkOE25cuU0aNCgHBP6zMLDw/XJJ58Ytrv58+fn6VGPwcHBmjlzZpYfr5k999xzWRLI3I7BP//8c5Z3pw0ZMkRDhw51+VF7N910k9q1a5ft3729T3rb1Xc5ZHD26El3JScnG66Mr1y5sluJcOnSpdWlS5d8x5FX//vf/7Ik9IWhTJkymjlzZo53QgQEBOi9997L8rvHzOf9wpT5Pa116tTR1KlTs30kqJT++LZJkyZl+U4//fRTt99nWZDHRAB5Q15sRF7sXTabzfAo6aCgILeKlmZHXpw98mLyYom82KzIi50jL7Yu8uLig2I3io0WLVpowYIFTh+f5Ex0dLRWrFihV199VbfeeqteeeUVp+/jcmb9+vWO9/BkGDduXI4/3D3h/vvvV7NmzVwat1evXob2nj17chw/89X0rVu3Vo8ePVxaVvv27bMkdbNnz852/Pnz5xtOHOXKlXM56a1ataqef/55w7Cff/45y2PfrMTX11ft2rVT+/btdc0113g7nGzFxMToxRdf1LfffmsY7u/vr6eeesowbPv27YYEJSwszK2OjZCQkCxXGLvz3jtJeuihhwr16rjjx4/rt99+Mwx76aWXXEpAfXx8NGrUKMO7v5KTk93+zO3atVPbtm3dmiYzf39/jRw50qVxnSUiDRs21IMPPpjrtEFBQVkS0NyOU3lVu3ZtQwfluXPndOjQIbfnM2DAAJfufvL19dUDDzxgGJbbZ/v0008N7RtvvFEDBgxwO8bsmGGf9DZnSb0r78TLTeZ3vFWrVs0j7yMtDA0bNtRDDz3klWU/9dRTLu1P/v7+Gj16tGHYkSNH9OeffxZUaJawcePGLMex0aNHO32HZGYBAQF64403DB23Z8+eNTxG0xUFeUwEkHfkxUbkxd4zf/58w2O+hwwZ4tIjZc2OvDhn5MXpyIvJi82KvDgr8mLrIi8uXqxxRAE8pGHDhvr+++/12muvuZzcS+mPlV6yZIk6dOjg0o+UzAe9pk2bFsqjuNw58d5www2G9rFjx7K9YjM+Pl7bt283DHvkkUfciu3RRx/Nsryr331xtV9//dXQ7ty5s+G9Lbm5//77DY+CS0tL04YNG1wP1mRsNpuWL1+uJ598Uj169MhyJ0FhuHTpkubPn5/l39y5czV16lQ9++yzateuXZbHwkjpVyJnLtJnHq9nz55uvx/w7rvvNly5u3nzZremdyWx9KRff/3VcFdLSEiI7rvvPpenDwsLU4cOHQzD1q9f71YMnvjMd955p+NdNrlp0qRJlmGZf7i5M/3VVwF7WvPmzQ3tzO+zzI2zH6U5yXwMzumzRUZGOh6Tl2HAgAEeTQzNsE96m7PPm/ldnHlx9Z0YUvq6dufdo950//33u/U+Kk/x8/Nz63jVpEmTLMeLX375xcNRWUvm80O9evWy3FWUk0aNGqlVq1Y5zjMnBXlMBJB/5MX/Ii/2jqioKE2aNMnRvv7669WnTx8vRuQa8uL8Iy9OR16cjrzYfMiLsyIvti7y4uKFd3aj2PH391efPn3Up08f7dy5U7/88os2b96s3bt3Kzk5Ocdpk5KS9Oqrr+rs2bM5Pkot8w+ZwnjMStmyZZ2+VyU7ISEhCg4OdjxWy2az6dKlS1l+fEjp76u5OuH39/fXnXfe6VZ8rVu3Vvny5RUbG+sYtm3btiyP8EhMTMzyiJ/cHuuUWWBgoG677TZD58r27dvdOrkUlubNmxs+r91uV3x8vKKiovT/7N13mFTl2Tj+e+gdpAgCdkFFRCCKmmiIYI3vN+Cb1x4VO5aYqIklb8wbWzRq1FiwxG4SNRoTjbGLJSpiAURFwQoEYRFxlw7L7vz+4MeE2V1gy+ycGfh8rsvLeQ7nnLl35jlnzv3cp7z77rvx2GOPZfWnDz74IA499NC47bbb6vTj3FClpaXx61//uk7LNGnSJM4444waB4CqbiN77bVXnWNq165dbLnllpnnjH388cexePHiaNu27XqX3WSTTWp968RcqTow9r3vfW+9t8Gq6oADDsi61eH7778fK1asqNV6UqlUtQO0+qjLrd569uxZbdq3vvWtWi9fdTBowYIFtV52TXPnzo1PP/00FixYEIsXL44VK1ZkDbBERLWrjup61Uvfvn3rNPhY9azOdd0WtOqZuJ06dYrvfve7dYpvfZLeJgvB4sWLq02r6zZakzZt2kSfPn0yJyqVlZXFOeecE5dffnmdbi2YhHz+zqxpwIABdb7qb/jw4fHee+9l2nUdmNvQVP3NqeuxVMSq35w19w1V17kujblPBHJDXryKvDgZl112WSxatCgiVuWNv/71r6Np06YJR7V+8uKGkxevIi9eRV5ceOTF1cmLi5e8eOOi2M1GbZdddsnc3qy8vDw++eSTeP/992PChAnxxhtvxJdfflnjcjfeeGPstNNO1Z7vFbFqJzRz5sysaYMGDcp57FX17NmzzmeZtW3bNmunuWjRohqT+qpJdt++fet8oJNKpWKnnXbKOpO8pufWfPLJJ1nPxlm9XF31798/K6kvlmfkpFKp6NChQ3To0CH69OkT//M//xMvv/xyXHDBBZnnUC1dujTOOOOMeOKJJ9b5zJYk7bTTTnHeeefFHnvsUe3flixZUu3q9AkTJsS0adPq/D5rnl1aWVkZX3/9da0SiHwn9BHV+2D//v3rvI6qyyxfvjymT58effr0We+yvXr1WufzaGprzedPrU9NZwTXZfmq32VNSdfavPnmm/H3v/89xo4dmzWYWFt1HUCoy98VUf1vWz3YV5MpU6ZktQcNGpTTs4oLYZssBDUlEbW5tVVtHHHEEXHppZdm2i+++GLss88+sd9++8WwYcNi9913b/RbutZV8+bNY5tttknkvevzu9+vX7+s9kcffZSrcIpSY/zmzJw5M5YsWVKrq1sac58I5J68WF6cT2PHjo1nn3020z7iiCPW+3z1YiUvrk5eXPfl5cWryIvzQ16cTV5c3OTFGxfFbvj/NW/ePHbcccfYcccd49BDD410Oh3vvPNO3HLLLdVu9ZVOp+Pqq6+OoUOHVjuwWl2QXFPVs7QbQ03J+PpUPXO6oqKixvnKysqy2nXdUa/Wu3fvda63pmkdO3as199Wm/cqFkOHDo0777wzjjzyyFi2bFlErDr4vOaaa+Kaa65JNLYmTZpEu3btokOHDrHVVlvFgAED4nvf+946n5H39ddfVzt7OFd/R2lpaa22t7qcVZcrudiOunXrFi1btsy62qa2fbtjx451fr+a1GVgoKarM+qyfNXbka3tlpJrKikpiV/96lcNvlVTXQYQIuq+D6762azrb6v6u1KbZ/3URSFsk4Wgpm2ptrcmXJ8jjzwyXn755azbkS5fvjyeeOKJzK3ytthiixg0aFDstttu8e1vf7vev7W50rZt28SusKrp6pf1qfp5LVmypNZX+GxoVqxYUe25evXpT1WPpSJWbSe1Seobc58INC55sby4MS1evDguueSSTLtr165x9tlnJxhRbsiLa09eXPfl5cWryIvzQ16cTV5cvOTFGx/FbliLVCoVu+66a9x5553xxz/+MevMs4hVZ1q/9dZbMWTIkKzppaWl1daTi7NG16cxnx1S9UCnvn9P1R18TQdQVc8are+Zj1VjTDqpb6h+/frFqFGj4tZbb81Me/rpp+OXv/xlXhLUXr16xdixY3Oyrsb8LlafDLA+dX3mUi7kcjtaM6mvus9Zm1ydRdzQfU1j7qu+/PLLOOaYY+Lf//53g9dVNcldn8b8u6p+xx06gtdLbQAAsBpJREFUdMjp+gthmywENZ3xXJ/ksiZNmzaNMWPGxI033hj33HNPjbeHnTFjRsyYMSMee+yxiFj1mIujjjoq/uu//iuR5DrJKw/qs3+sKYlcsGBBwV0ZkA81bdO5+kzLysqq3UqzJkk80w5oHPLi/5AXN9x1112XdVvk888/P+fHto1JXtxw8uLcLL8u8uL6KYRtshDIi7PJi4uXvHjj02T9swA/+tGP4ogjjqg2verzYmpip7Z2tflscvX5bQjfw8iRI7Pa5eXl8c477yQTTAOUl5c32rrrmoglSd/OvQsvvLBaQr/11lvH6aefHrfddls88cQTMX78+Hj33Xfjww8/jKlTp2b+u+KKKxKKuu5y/Z3bJlep+iyr7t27R+fOnXO2/ubNm8c555wTzz33XJx77rkxYMCAdSbrkyZNivPOOy/+53/+J7744oucxbGhKqa+loT67Df8vgBVyYsbx8aSF3/99dfxpz/9KdPefffd8/Ic90LlGHyVDaFvFxp5cf3YJleRFxe3YuprSZAXb9hc2Q21dPzxx8eDDz6YNW369OnV5qt6lW1lZWUsWrSoqM5WrqrqbZ7q+7yIqs99qekzqTqtvu9Vdbli/vxX23rrraN169ZZt2DJxZm6+Va1PzVv3jwmT55c7dZcG5qOHTvGV199lWnX9Byk2qi6XK5uw1bsxo0bV22g9cILL4xRo0bVavklS5Y0QlS5UfV3JddnnG+s2+SaSkpKqiXOjfVc0e7du8cpp5wSp5xySixatCgmTpwY77zzTkyYMCEmTpyY9Xy3iFXPpjvmmGPi4Ycfjh49ejRKTIWmPr/9NS3TWL/9hX4rsZp+F+rzm1PTMxr95gDy4v+QF9fN0qVLs35Dx48fH9tvv3291jVr1qxqy5555pnx4x//uEEx5tPGegwuL25c8uL621i3yTXJiwuLvLhh5MUbn41nbw0NtNVWW1W71UVNt0mq6Wy3mpL/YlL1gHLWrFn1Wk/VwmxNPww1HbzW54eoNu9VjKr2wWK6FdJqVbeR8vLymDNnTkLR5E8utqOvvvqq2m2eNpS+3VDPPfdcVvuQQw6pdUIfEfHNN9/kOKLcqbrNzJgxo1HXv7Fsk2v685//XO0M6O9973uN/r7t2rWLvffeO37605/GfffdF+PHj4/rr7++2oDC3Llz43e/+12jx1MovvzyyzovU3Wf2qZNm7U+l6zqmdl1TdLrOyibLy1atKh2W9L6/ObUdEKd3xxAXvwf8mIaYmM9BpcXNy55ce7Wv7Fsk2uSFxcWeXHDyIs3PordUAetW7deZzti1XMctthii6xpEydObNS4Glvfvn2z2tOmTat2ht36pNPpmDJlSta0ms7i3nbbbaNZs//cdCKdTscHH3xQp/eKiHj//ffX+17FqOqZq7m8lVC+dOrUqdrzft56662EosmfqttR1T5aG1WXadmyZWy11VYNCWuDMXXq1Kx2XW+J+N577+UynJzaaaedstqTJk3K6a2pNtZtcrVFixbFQw89lDWtbdu2sd9+++U9ljZt2sRBBx0UDz74YBx99NFZ//bss8/W+EyzDVF9fvdrc4yxWtXnri1evLhO71Xf4kY+NcZvzuabb57Isz2BwiMvXkVeTENsrMfg8uLGJS+uv411m1xNXlx45MUNJy/euCh2Qy2tWLEi5s+fnzVtbYXGIUOGZLX/8Y9/NFpc+TBw4MCs2/aUl5fHSy+9VKd1vPXWW9U+v8GDB1ebr02bNtV+iJ9//vk6vdeSJUviX//6V9a0xrrtTj5NnTq12mDKpptumlA0DbPnnntmtZ966qmEIsmfqn3wpZdeqvPg2LPPPpvV7t+/fzRv3rzBsW0Ivv7666z2ZpttVutlFy1aVNBJ7B577JHVLi0tjVdeeSWn77ExbpOr/fKXv6x2BcNhhx1W7aq1fDvnnHOytu9ly5at9RllVZ9xVlFR0ZihNbrJkyfHvHnz6rTMCy+8kNXeZZdd1jpv1du41fWRIHXdX6xZrIjIz/dT9Ten6lU+tfHMM8+sc53AxkleLC+ur06dOsWvf/3rev1X9crCmtaVj6sPc21jPAaXFzcueXHDbIzb5Gry4sIjL244efHGRbEbaumVV16pthOuelbhagcddFBWe/LkyfHaa681WmyNrX379tUS8D/+8Y91Wsf999+f1d56662rnem/2tChQ7Pa//jHP+r0LJ6//vWvWc8Zatq0aey99951iLYw/e1vf8tqN2/ePL71rW8lFE3DHHDAAVntF198MSZPnpxQNPnx3e9+N+sWQaWlpfHPf/6z1svPnTs3nn766axpxTig01iqDm7U5XZKf/7znwv62WTdu3evdjB922235fT5SBvjNhkRceONN1YbwOjUqVOMHj06oYj+o127dtVu87h06dIa5616RnZ9n+tZKCoqKuIvf/lLred/7733ql2Fsq794zbbbJPVnjBhQq3f6913342PPvqo1vNHJPP9VD2WmjZtWrz55pu1Xv6jjz6qNnjhNweIkBfLi+uvXbt2ceSRR9brv/79+2etq23bttXm2XnnnRP6y+pvYzwGlxc3Lnlxw2yM22SEvLhQyYsbTl68cVHsZqNw7LHHxttvv13v5ZctWxbXXXdd1rRUKrXWndtee+0V/fr1y5p24YUX1vlsrELyox/9KKs9fvz4+Pvf/16rZV988cVqZ94ec8wxa53/iCOOyDpALy0tjd/+9re1eq85c+bEDTfckDVtv/32ix49etRq+cZU17OV1zR58uRqAynf+c53Ej/Dsr6GDh1abTDiZz/7WYOeD5XL21c1hi233DK++93vZk275pprql3ZsTaXXXZZVuLZqlWrOPTQQ3MaYzGruo3X9iqbjz/+OG6++eZGiCi3Tj755Kz2O++8E7fddlvO1r+xbZPffPNNnHHGGXHTTTdlTU+lUnHllVdWS6YbYuXKlfVa7ptvvqm2f+jatWuN81ad/tlnn9XrPQvJH/7wh5g5c+Z65ysvL49LLrkka9pWW21V7cqPNQ0YMCCr/fLLL9fqGG3FihVx8cUXr3e+qtq2bRutWrXKtBctWhQlJSV1Xk9d7LnnntGnT5+saZdcckksW7ZsvcuWl5fH//3f/2Vtw5tuumnsv//+OY8TyC95ccPJi8mlje0YPEJe3NjkxQ2zsW2T8uLCJy9uGHnxxkWxm43C+PHj4+ijj45Ro0bFU089Vaei45w5c+KEE06ITz75JGv6wQcfHN27d1/rcj//+c+zbnFWUlISRx55ZHz88ce1et+ysrK45ZZbah1nY9tvv/2q/ThcdNFF6z1wHj9+fJxzzjlZ03r27BmHHHLIWpfp3r17/Pd//3fWtL/+9a/x+9//fp0HiXPmzIlRo0bFggULMtOaNWsWp5566jpjzJcTTzwxxowZkxVfbTz33HNx4oknRnl5eWZa06ZN4+yzz851iHl1/vnnZ93CZvr06XHUUUfV6czAdDodb7zxRpx22ml1vq1fEkaPHp21X5g3b16ceOKJ60zsKyoq4rLLLqt225yjjjoqNtlkk0aLtdhUvU3m3Xffvd7nG73//vtx/PHH1+ogN2nDhg2r9jdef/31cf3119c6aRw/fnyMHTt2rf++oW+TlZWV8dFHH8XFF18c++yzT43x/fKXv4x99tknp+/70ksvxVFHHRXPPfdcrb+rioqK+M1vfpN15Vzv3r2jV69eNc6//fbbZ+1bvvjiixg3blzDAk/YkiVL4qSTToo5c+asdZ4VK1bEeeedV+1qi9NOOy3riqGqdt111+jSpUumvWzZsvjlL3+5zu9nyZIlcdZZZ9XruWlNmjSJHXbYIWvaAw88UOf11NVpp52W1f7444/jzDPPXOcVO8uXL49zzz03Jk2alDX91FNPdXtQ2ADIixtOXkyubejH4DWRFzceefH6yYvlxcVEXtxw8uKNR7P1zwIbjnHjxsW4ceOiY8eOMWzYsBg8eHAMGjQoevXqFW3atMnMN3/+/Pjwww/j2Wefjccee6za7VE6deoU55133jrf69vf/nacfvrpWWfHzZgxI0aMGBEjRoyI73//+zF48ODMLTzS6XTMnDkzJk+eHC+88EK89NJLsWTJkmo75KQ0a9Ysfve738X//M//ZAZFVqxYEaNHj46RI0fGYYcdFgMGDIhmzZpFRUVFfPjhh/Hwww/HX/7yl6xbCjVt2jSuvvrqrM+7JhdccEGMHz8+6zksY8aMiTfeeCNOPPHE+M53vhOtW7eOiIiZM2fGk08+Gbfffnu1W6CcddZZ1a4mSMqCBQvi97//fYwZMyb22muvGDp0aPTr1y+22267rFu5rFy5Mj777LOYMGFC/P3vf4+JEydWW9epp55a7QCh2Oy2225xwQUXxGWXXZaZ9tlnn8V///d/x7777hv/7//9vxg8eHDWgVd5eXnMnDkzPvroo3j77bfj+eefz5wFOGLEiLz/DXU1ePDgOPnkk7POPJ4yZUocdNBBceqpp8aBBx4YPXv2jIiIxYsXx7/+9a/4wx/+EO+//37Wevr27Vv0Jzvk2siRI+Pmm2/O7K+XLFkSRx99dJx88snxgx/8IDbffPOIWLV9TZ48Of7+97/HX//618xB/JAhQ+p0K6N8S6VSce2118YhhxwSX331VWb6LbfcEk8++WQce+yxsddee8UWW2yRSe4WLVoUH330UbzxxhvxzDPPxLRp0+LMM8+MYcOG1fgexbpNvv/++zUmSEuXLo0FCxbEwoUL44svvoh33313rbfxa926dVx22WXxX//1X40S4zvvvBPvvPNOdOrUKYYNGxZ77LFH9OvXL7bccsto0aJFZr6SkpIYP3583HPPPdWSx2OOOWatiWrr1q1jzz33zLo17MknnxzDhg2Lfv36Rfv27bOS/k033TSGDx+e478yd3bZZZd4991344svvoj/+q//ilNPPTUOPvjgzP5x0aJF8eKLL8att95areiy1157xciRI9e5/ubNm8dhhx2WVTx58cUX40c/+lGceeaZMWTIkMz3MmvWrHjxxRfjjjvuiNmzZ0fEqmd01fTbvC777LNPVqJ8yy23xNtvvx277bZbdOnSpdrz5Y488sg6rb8mBx98cIwdOzaeeOKJzLR//etfcfDBB8fo0aNj3333zWzPpaWlmc+06jPw9tprrzj66KMbHA9QOOTF9ScvJteK9Ri8IeTFjUdeLC+uSl4sL14bebG8eEOj2M1GqaysLP72t79lPQO5ZcuW0aZNm1i8ePE6z3Dv1KlT3HPPPes8e321M844IxYuXBj33ntvZlpFRUU8+uij8eijj0bEqh/iFi1axMKFC3P6nJnGsP3228fVV18dP//5zzOfUTqdznyWTZo0ifbt28eiRYuqPcctYlVCf/HFF8euu+663vdq06ZNjBkzJk444YSss9cmTJiQeYZI+/btY/ny5Wv9vn74wx9Wu8VRISgvL48XX3wxXnzxxcy05s2bR9u2bWPFihWxdOnSdZ6pf8IJJ8RPfvKTfITa6I455phYunRpXH/99Zk+U1FREc8880zmjO3Vn83y5cvX+lyeYnLWWWdlBqJWW31Lwt/+9rfRokWLaNmy5VqTj8033zxuvvnmrESAiG7dusWPf/zjuOqqqzLTli5dGjfccEPccMMN0bp162jZsmWUlZVV274OOeSQgk/qI1b9jXfccUeMHj06k1xErDrT/NJLL42IVWfKdujQod7bSzFuky+99FKtb89Xk3333TcuuOCCzMBPYyotLc06BohY9XvXsmXLWLJkSSxfvrzG5fbee+849thj17nuU045JcaNG5c5ligvL8/63tY0ZMiQgk7qDz/88OjSpUuMHTs2Fi5cGNdcc01cc8010bJly2jevPlan+217bbbZu0D1mX06NHx9NNPx+eff56ZNnHixDjxxBMz29HixYuz7qoSserYYtddd61zUn/YYYfFfffdF19//XVm2ltvvVXt+V+r5SKpj4i4+OKLY+7cuVn7ty+//DJ+9atfxa9+9ato3bp1pFKptZ7V3r9//7j66qvXeUUAULzkxfUjLybXivEYvKHkxY1DXiwvri95ceGRF8uLqRu3MWejMHz48MzZzmuzfPny+Oabb9aZ0A8bNiweffTR2HHHHWv1vk2aNIlf/OIXcdlll0XHjh1rnGfp0qVRVlZWY0JfiDvQAw88MO68884an/VVWVkZZWVlNSb0nTt3jptvvrlOz1Ladttt46GHHoqBAwfW+O8LFy6s8ftq3rx5nHXWWfGb3/wm64y9QlZeXh6lpaWxZMmStRa6e/ToEWPGjInzzz8/z9E1rlNOOSXuuOOO6N27d43/vvqzWVfy0Llz51oNtBWCZs2axbXXXhunnnpq1q2xVluxYsVaE/ohQ4bEQw89FFtssUVjh1mUTjzxxDjhhBNq/LelS5dGaWlpte3r8MMPzzpju9DtsMMO8fDDD8dee+1V479XVlauc3upze/KxrBNdunSJY4++uj4xz/+ETfffHNeEvq1WbJkSXzzzTc1JvSpVCoOP/zwGDNmzHp/z/bYY4+4+OKLs56BVaxWX7FR9WqL5cuXrzWhHzBgQNx7771ZV1isS6tWreKOO+6ILbfcstq/rd6Oqib0Rx99dGYAra46d+4cY8aMic0226xey9dXu3bt4s4774wf/vCHNW7/S5cuXWtCf8ABB8T9998fnTt3buwwgTyRF+eOvJhc2xiOwdckL2488mJ5cW3JiwubvDh35MUbB1d2s1EYM2ZMLFu2LF577bUYP358vPPOO/HRRx/V6hkhXbt2jX333TdGjhwZgwYNqtf7H3rooXHggQfG3XffHf/85z+r3Qajqm222Sb23XffOOyww+r1fo1tyJAh8cwzz8R9990Xf/3rX9f59/Tq1StGjhwZJ5xwQrRr167O79WjR4946KGH4qmnnop777033n333bWe6d+xY8cYPnx4nH766YkeoK3NbbfdFi+//HK8+uqrMXHixKxbLq1Ny5YtY9ddd41DDjkk9t9//2jZsmUeIs2/b3/72/HMM8/EE088EX/5y19i8uTJ1Q6mqurVq1fsscceMXz48Bg6dGiNCXKhSqVScc4558QhhxwSY8aMiRdffHGtiXzTpk1j4MCBccIJJ8S+++6b50iLz/nnnx977LFH3HDDDdVuc7emb33rW3H66aevNTkuZN26dYs777wzxo8fH3fddVeMHz9+nQl2mzZtYvfdd48RI0bUug8V+zbZpEmTaNGiRbRq1So6d+4c3bp1i6222ir69u0bgwcPjh122CFvg7777rtvPProo/Hiiy/GuHHj4v3331/v8/Datm0bw4cPj2OPPTZ23nnnWr/XYYcdFkOHDo3HH3883nrrrfjkk08yAzCFfpVcVa1bt44xY8bEo48+GrfffvtajzV69+4dxx13XPzoRz+q83fau3fveOSRR+LWW2+NBx54YJ1ncZ911lkxdOjQuv4ZWQYOHBhPPvlkPP300/HKK6/E1KlTY968ebF06dL1bl8N0aJFi/jNb34TRx11VIwZMyZef/31te4zWrRoEUOGDInTTjutVlccAsVFXpxb8mJyrdiPwetKXtx45MXVyYvlxfLimsmLa55XXlx8Uul13SsXNmArVqyI6dOnx/Tp0+Orr76KRYsWRXl5ebRp0ybatWsX3bp1ix122KFRzsCbNWtWfPDBBzF//vwoLS2Npk2bRrt27WLzzTePPn36FPRZfzWZOXNmfPDBB/H111/HwoULo127dtG5c+fYfvvtY9ttt83pe5WWlsbEiRNj3rx58c0330SLFi1ik002iS233DJ23nnnas/2KGQlJSXxxRdfxKxZs2LBggWxZMmSaN68ebRr1y46duwY22yzTWy33XZFlazmytKlS+Pdd9+NOXPmZK54X71t9u7dO7bddtvo1q1b0mHmzOrnZc2cOTPmz58f5eXlsckmm8Smm24agwYNig4dOiQdYlGaOXNmTJo0KXPQ3KZNm+jdu3fssssuG1T/WbFiRbz77rsxa9asrO2la9eusfXWW0efPn0afHu/jW2bbEzl5eXx+eefx4wZM6KkpCQWL14cFRUV0aZNm9hkk02iT58+se2227olYxVTp06NKVOmxFdffRWpVCq6desW2223XfTv3z8n61+xYkVMnDgxvvjiiygtLY1UKhWbbbZZ7LLLLhvcVUMrVqyICRMmxOzZs2P+/PlRWVkZnTt3jh49esTgwYPXe9UnsGGRF+eOvJhc29iOweXFjUNeLC8uRPLi+pEX5468eMOj2A0AAAAAAABA0fHQHgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdJolHQCF4Ztvvkk6BIpYKpWKTp06RUREaWlppNPpZANig6WvkU/6G/mir5FP+lth2GSTTZIOgbWQG1Nb9qfkk/5Gvuhr5Iu+Rj7pb4Upl3mxK7sBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUnWZJBwAAAAAAAIVo2LBhUVJSknQY69S9e/cYO3Zs0mEAQCIUuwEAAAAAoAYlJSUxe/bspMMAANZCsRsAAAAAANYh1aRJtO/aPekwsiycVxLpysqkwwCARCl2AwAAAADAOrTv2j0ufHpy0mFkueLAAbFgrqvOAdi4NUk6AAAAAAAAAACoK8VuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARadZ0gGwbjNmzIgpU6bEnDlzorKyMrp37x59+vSJvn37Jh0aAAAAAAAAQGIUu+th8eLFMWXKlJg8eXJMnjw53nvvvZg1a1bm33v16hVjx45t0Hu8/PLLccstt8TEiRNr/Pftt98+TjrppPjBD37QoPcBAAAAAAAAKEaK3XVw9913x6OPPhqffPJJVFZWNsp7pNPp+M1vfhP33XffOuebOnVq/PznP4+XXnoprrzyymjRokWjxAMAAAAAAABQiBS76+Ctt96KadOmNep7/O53v6tW6B48eHDsvPPO0bRp05g6dWq8/vrrkU6nIyLin//8ZzRt2jSuvvrqRo0LAAAAAAAAoJAodjdQmzZtYqeddooPPvgglixZ0qB1vfjii/GHP/wh0+7QoUPccMMNseeee2bNN2XKlDjttNNizpw5ERHx+OOPx7e+9a044ogjGvT+AAAAAAAAAMVCsbsOWrZsGQMGDIidd945+vfvHzvvvHNsu+220aRJkxg2bFiDit3pdDquvfbaTDuVSsWYMWNit912qzZvv3794p577okRI0bE8uXLIyLipptuipEjR0arVq3qHQMAAAAAAABAsVDsroPrrruu0db9/PPPZ90ifcSIETUWulfbeuut48QTT4wxY8ZERMRXX30VDz/8cBxzzDGNFiMAAAAAAABAoWiSdACs8vTTT2e1jz766PUuc8QRR0TTpk3Xug4AAAAAAACADZVidwFYuXJlvPLKK5n2ZpttFgMGDFjvct27d4+BAwdm2hMnToz58+c3RogAAAAAAAAABUWxuwBMmzYtFixYkGkPGjSo1suuOW9FRUVMmDAhp7EBAAAAAAAAFCLF7gLw6aefZrV33HHHWi/br1+/rPZnn32Wk5gAAAAAAAAACplidwGoWqDu2bNnrZfdbLPN1rkuAAAAAAAAgA2RYncBKCkpyWr36NGj1stWnXfOnDk5iQkAAAAAAACgkDVLOgAilixZktVu27ZtrZetOm/VddVWKpWq13IQkd1/9CUak75GPulv5Iu+Rj7pb7Butgtqy/6UfNLfklUMn3kqlcpJnPoa+aKvkU/624ZPsbsAVC1Qt2jRotbLtmzZcp3rqq1OnTrVazmoqmPHjkmHwEZCXyOf9DfyRV8jn/Q3qE5uTH3Yn+bXrrvuWvB3NuzRo0e8/fbbjbJu/S3/iqEwkkqlcv4bpq+RL/oa+aS/bZgUuwvA8uXLs9p1KXZXnXfZsmU5iQkAAAAACs2cOXNi1qxZSYcBAECBUOwuAFWvzl6xYkWtl606b6tWreoVQ2lpab2Wg4hVZ4+uPiOqrKws0ul0whGxodLXyCf9jXzR18gn/a0wuHq4cMmNqS370+Ss/qxTTZpE+67dE44m28J5JZGurIx0Op3T/Yn+lqxi+Lxz1ef0NfJFXyOf9LfClMu8WLG7ALRp0yarXZdid9Wrwquuq7Zs3ORKOp3Wn8gLfY180t/IF32NfNLfoDrbBPVhf5pfqz/r9l27x4VPT044mmxXHDggFsyd3ah9Qn/Lv2L4vBujX+hr5Iu+Rj7pbxumJkkHQPUC9eLFi2u9bNV561vsBgAAAAAAACgmit0FoHv37FsuzZkzp9bLzp49O6vdo0ePnMQEAAAAAAAAUMgUuwvAtttum9X+8ssva71s1cL4Nttsk5OYAAAAAAAAAAqZYncBqFrsnjJlSq2X/eCDD7Lait0AAAAAAADAxkCxuwD06dMnOnTokGlPmjSp1stOnDgx87pp06YxePDgXIYGAAAAAAAAUJAUuwtAs2bN4rvf/W6mPXv27Hj33XfXu1xJSUnWfIMGDYrOnTs3SowAAAAAAAAAhUSxu0AcdNBBWe0///nP613mwQcfjIqKikz7wAMPzHlcAAAAAAAAAIVIsbtADB8+PPr27ZtpP/bYY/HWW2+tdf7PP/887rzzzky7W7duceihhzZqjAAAAAAAAACFQrG7QKRSqTjnnHMy7XQ6HaeffnqMGzeu2rxTpkyJUaNGxfLlyzPTzjzzzGjVqlVeYgUAAAAAAABIWrOkAygms2bNiv3226/Gf1vzduKzZs2Kfv361TjfPffcE0OGDKnx3/bZZ584+eST4w9/+ENERCxYsCBGjRoVgwcPjgEDBkSTJk1i6tSp8frrr0c6nc4s94Mf/CCOOOKI+v5ZAAAAAAAAAEVHsbsO0ul0VlF7XdY235pF6pqcc845sWzZsrj//vsz0yZMmBATJkyocf7vf//7cdlll9UqJgAAAAAAAIANhduYF5gmTZrEL3/5y7j99ttj4MCBa52vb9++cdVVV8V1110XLVu2zF+AAAAAAAAAAAXAld110Lt375g6dWpe3mvo0KExdOjQmD59enzwwQcxd+7cqKioiO7du0efPn1i++23z0scAAAAAAAAAIVIsbvAbbnllrHlllsmHQYAAAAAAABAQXEbcwAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEWnWdIBAAAAAMDGZtiwYVFSUpJ0GOvUvXv3GDt2bNJhFI1F8+dFRERJSUnstNNOOVtvKpWKVCoVERHpdDrS6XS91jNv3ryoqKiIpk2bRteuXXMWXy4UcmyFvp0CwMZOsRsAAAAA8qykpCRmz56ddBjkULqyIiIiKisrC/q7LeT4Cjk2AKAwKXYDAAAAQEJSTZpE+67dkw4jy8J5JZGurEw6jKJViN9pRMSCuauKyIUYXzHEBgAUJsVuAAAAAEhI+67d48KnJycdRpYrDhygwNcAhfidRkT8Ytfuka6sLMj4iiE2AKAwNUk6AAAAAAAAAACoK8VuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARUexGwAAAAAAAICio9gNAAAAAAAAQNFR7AYAAAAAAACg6Ch2AwAAAAAAAFB0FLsBAAAAAAAAKDqK3QAAAAAAAAAUHcVuAAAAAAAAAIqOYjcAAAAAAAAARadZ0gGwbuXl5TFt2rSYOnVqlJWVxfLly6Ndu3bRrVu36N+/f/Tq1SvpEAEAAAAAAADyTrG7QJWUlMQf/vCHeOyxx2LBggVrna9Pnz5x1FFHxeGHHx5NmzbNY4QAAAAAAAAAyXEb8wL0/PPPx//7f/8v7r///nUWuiMiPv7447j44ovjiCOOiLlz5+YpQgAAAAAAAIBkubK7wLz66qvx05/+NMrLyzPTmjVrFnvssUf07ds3WrduHd98801MnDgxPvzww8w8kydPjuOOOy4efvjhaNeuXRKhAwAAAAAAAOSNYncBWbZsWVx00UVZhe7ddtstrrrqqujZs2e1+ceNGxc///nP46uvvoqIiM8++yxuuOGG+MUvfpG3mAEAAAAAAACS4DbmBWTs2LHx5ZdfZtpbbbVV3H777TUWuiMi9txzz7jjjjuiWbP/nLPwyCOPxIoVKxo9VgAAAAAAAIAkKXYXkHHjxmW1R40aFW3atFnnMjvssEMMHz480168eHG89957jRIfAAAAAAAAQKFQ7C4gJSUlWe2BAwfWarnBgwdntefOnZurkAAAAAAAAAAKkmJ3AamsrMxqt2rVqlbLtW7dOqudSqVyFhMAAAAAAABAIVLsLiC9e/fOas+ePbtWy82aNSurveWWW+YsJgAAAAAAAIBCpNhdQPbee++s9lNPPbXeZSoqKuKZZ57JtHv16hXbb799zmMDAAAAAAAAKCSK3QXke9/7Xlah+q9//Wu8+OKLa50/nU7HVVddFV988UVm2hlnnBFNmvhaAQAAAAAAgA1bs6QD4D+aNm0a1113XRx11FFRWloaFRUVcfrpp8fhhx8eI0eOjL59+0br1q3jm2++iUmTJsU999wT48ePzyx/xBFHxA9/+MN6vbfnfNMQa/YffYnGpK+RT/ob+aKvkU/6G6yb7YLaysX+tBj6WyqVKrg4Cy0eKAS52lYdK5Iv+hr5pL9t+BS7C8y2224bDz/8cPzv//5vvPnmm1FZWRkPPPBAPPDAA2tdpmvXrnHWWWfF4YcfXu/37dSpU72XhTV17Ngx6RDYSOhr5JP+Rr7oa+ST/gbVyY2pj/ruTwt5sHXR/HkRETFnzpzo379/wtFkmzNnTtIhQMFJpVI5/w1zrEi+6Gvkk/62YVLsLkBbbLFF3H///fHoo4/GlVdeGWVlZWudt1+/fvHrX/86dtlllzxGCAAAAMCGKl1ZERERlZWVMWvWrISjAQCAtVPsLkCffvppXH755fHaa6+td94pU6bEYYcdFkOHDo1LLrkkevToUa/3LC0trddyELHq7NHVZ0SVlZVFOp1OOCI2VPoa+aS/kS/6GvmkvxUGVw8XLrkxtZWL/Wkx7INTTZpE+67dkw4jy4K5s5MOAQpOOp3OyW+YY0XyRV8jn/S3wpTLvFixu8C89tprccYZZ8TSpUsjIqJ58+Zx6KGHxsEHH5x5ZndpaWlMnjw5HnzwwXjllVciIuLll1+OQw45JP74xz/GtttuW+f3tXGTK+l0Wn8iL/Q18kl/I1/0NfJJf4PqbBPUR333p8XQ39p37R4XPj056TCy/GLX7pGurEw6DCgojXFc51iRfNHXyCf9bcOk2F1AZsyYEWeeeWam0N2hQ4e44447qt2ivFu3bjF8+PAYPnx4PPDAA/HrX/86IiLmz58fp512Wjz22GPRunXrfIcPAAAAAAAAkDdNkg6A/7jmmmtiyZIlmfYll1yy3mdxH3nkkXHkkUdm2tOnT48///nPjRYjAAAAAAAAQCFQ7C4QCxcujOeffz7T3mKLLeLAAw+s1bKnnHJKVvuxxx7LaWwAAAAAAAAAhUaxu0C89957UVFRkWnvtttukUqlarVsz549o3fv3pn2xx9/HMuXL895jAAAAAAAAACFQrG7QHz99ddZ7W7dutVp+TXnr6ysjNLS0lyEBQAAAAAAAFCQFLsLRMuWLbPay5Ytq9PyS5cuzWq3adOmwTEBAAAAAAAAFCrF7gLRuXPnrPann35a62XLy8tjxowZmXaLFi2iffv2OYsNAAAAAAAAoNAodheIfv36RfPmzTPtN998M7766qtaLfvCCy/EkiVLMu2BAwfmOjwAAAAAAACAgqLYXSDatGkTu+++e6a9fPnyuOyyy9a73DfffBNXXXVV1rRhw4blPD4AAAAAAACAQqLYXUDOOOOMrPbTTz8dZ5111lqv8J48eXIcddRRMWvWrMy0rl27xuGHH96ocQIAAAAAAAAkrVnSAfAfgwcPjtGjR8ett96amfbMM8/Eiy++GEOGDIm+fftGmzZtorS0NCZNmhTvv/9+1vLNmzePa665Jtq0aZPv0AEAAAAAAADySrG7wJx99tnRvHnzGDNmTFRUVERExIoVK+LVV1+NV199da3Lde7cOa688srYc8898xUqAAAAAAAAQGLcxrwAnXnmmfHII4/ED37wg2jZsuU65+3SpUuceuqp8cQTT8TQoUPzFCEAAAAAAABAslzZXaD69esXV199dVx++eUxZcqU+PTTT2PBggWxbNmyaNu2bWyyySbRr1+/2GabbSKVSiUdLgAAAAAAAEBeJV7s/ulPfxpHHXVUDBkyJOlQClKLFi1i4MCBMXDgwKRDAQAAgAYzDgAAAECuJH4b86effjqOO+64OOigg+K+++6LBQsWJB0SAAAA0EiMAwAAAJAriRe7V/v888/jiiuuiO9+97vxi1/8IiZPnpx0SAAAAEAjMQ4AAABAQxVMsTuVSkU6nY5ly5bF3/72tzj88MPjv//7v+Phhx+OpUuXJh0eAAAAkEPGAQAAAGioxIvdt9xyS3z3u9+NVCoVEZH5fzqdjilTpsSvfvWr2HvvvePSSy+NadOmJRkqAAAA0EDGAQAAAMiVxIvd++yzT9x2223xwgsvxKmnnhpdu3aNdDodEf85y3vRokXx5z//OUaMGBFHHXVUPPHEE1FeXp5w5AAAAEBdGQcAAAAgVxIvdq+22Wabxdlnnx0vvfRSXH/99bHnnntm/m3Ns7wnTpwYP//5z+O73/1uXHPNNTFz5sykQgYAAADqyTgAAAAADVUwxe7VmjZtGgceeGDcfffd8cwzz8Txxx8fHTt2zJzlHbEq2f3mm2/izjvvjAMOOCBOPPHEeP7556OysjLByAEAAIC6Mg4AAABAfRVcsXtNW2yxRZx//vnxyiuvxG9/+9sYPHhw1q3NIiIqKyvj9ddfjx//+Mexzz77xE033RQlJSVJhg0AAADUg3EAAAAA6qKgi92rtWjRIkaMGBF//vOf44knnoijjjoq2rVrl0l40+l0pNPpKCkpiZtvvjmGDx8eP/7xj+P1119POHIAAACgrowDAAAAUBtFUexe03bbbRe/+tWv4l//+ldceumlsdNOO0XEqjO8U6lUpNPpWLlyZTz//PNx4oknxgEHHBD33XdfLFq0KOHIAQAAgLoyDgAAAMDaFF2xe7VWrVrFyJEjY9SoUdGzZ8+s25qtvrVZOp2O6dOnxxVXXBHDhw+P22+/PcrLy5MMGwAAAKgH4wAAAABU1SzpAOpjxowZ8dBDD8Xf/va3+OabbyIishLbNa0+y7usrCyuu+66eOKJJ2LMmDHRu3fvvMcNAAAA1J1xAAAAAGpSNMXuioqKeOGFF+LBBx+MN954I/N8roj/JLIREUOGDImjjz462rdvHw899FC88MILsXLlysw806ZNi2OPPTYef/zxaNeuXZJ/EgAAALAWxgEAAABYn4Ivds+ePTseeuih+Otf/xrz5s2LiFVnba/5bK42bdrEiBEj4uijj45tt902s+y3v/3tmDdvXtx9993xpz/9KZYvXx7pdDpmz54d9913X5x++ulJ/VkAAABADYwDAAAAUFsFWexOp9Px0ksvxUMPPRT/+te/orKyMuvs7dXz9OnTJ4488sgYMWJEtG3btsZ1de3aNX7+85/HD3/4wzj22GPj66+/jnQ6Hc8//7wkFwAAAAqAcQAAAADqo6CK3V999VU8/PDD8cgjj8Ts2bMjovrZ202bNo199903jjrqqBgyZEit173NNtvEaaedFpdeemlERHzxxReN8ScAAAAAtWQcAAAAgIYoiGL3a6+9Fg8++GC8+OKLUVFRUePZ2926dYvDDz88DjvssNh0003r9T6DBg3KvF66dGnDAwcAAADqzDgAAAAAuZB4sXv//fePmTNnRkT1s7fT6XTstttucdRRR8V+++0XzZo1LNyOHTtGxH+SZwAAACC/jAMAAACQK4kXu2fMmJFJOlcnt23atIkRI0bE0UcfHdttt13O33N1Mg0AAADkl3EAAAAAciXxYvdq6XQ6tttuuzjyyCNj5MiR0bZt25y/R7du3eK+++7L+XoBAACAujEOAAAAQEMlXuxu1qxZDBs2LI4++ujYfffdG/W9WrRoEUOGDGnU9wAAAADWzjgAAAAAuZJ4sfuFF16I7t27Jx0GAAAAkAfGAQAAAMiVJkkHIMEFAACAjYdxAAAAAHIl8WI3AAAAAAAAANSVYjcAAAAAAAAARSfxYveECRNi+PDhMXz48Nh///3j66+/rvM65s2bFwcccEAMHz489t133/jggw8aIVIAAACgoYwDAAAAkCuJF7sffvjhmDVrVnz55Zex4447RpcuXeq8jq5du8b2228fs2bNilmzZsXDDz/cCJECAAAADWUcAAAAgFxJvNj98ssvZ17/4Ac/qPd6RowYkXk9duzYBsUEAAAANA7jAAAAAORKosXuTz/9NObPnx8REc2aNYu999673uvae++9o1mzZpFOp+Orr76KL774IkdRAgAAALlgHAAAAIBcSrTY/cknn0RERCqVij59+kSLFi3qva4WLVpEnz59qq0bAAAAKAzGAQAAAMilRIvdJSUlmdebbbZZg9fXs2fPzOs5c+Y0eH0AAABA7hgHAAAAIJcSLXYvWbIk87pt27YNXl+bNm1qXDcAAACQPOMAAAAA5FKixe41k9IFCxY0eH0LFy7MvG7WrFmD1wcAAADkjnEAAAAAcinRYvcmm2ySeT1jxowGr2/mzJk1rhsAAABInnEAAAAAcinRYvfmm28eERHpdDo+//zzBj1fa86cOfHpp59m2ms+twsAAABInnEAAAAAcinRYnf//v2jdevWkUqlIiLirrvuqve67r777szrli1bxqBBgxocHwAAAJA7xgEAAADIpUSL3c2aNYvvfOc7kU6nI51OxwMPPBDjx4+v83rGjx8ff/rTnyKVSkUqlYo99tgjWrRo0QgRAwAAAPVlHAAAAIBcSrTYHRFxyimnREREKpWK8vLyOOOMM+Kpp56q9fLPPvtsnHnmmVFRURHpdDprnQAAAEBhMQ4AAABAriRe7B4wYEAceOCBkU6nI5VKxaJFi+Kcc86J4447Lp588sn4+uuvqy0zf/78eOqpp2LUqFHxk5/8JBYuXBgRqxLl/fbbLwYPHpzvPwMAAACoBeMAAAAA5EqzpAOIiLj88svj448/jk8//TRSqVSk0+l48803480334yIiI4dO0bHjh0jIqKsrCzKysoyy65OjtPpdPTp0yeuvPLKRP4GAAAAoHaMAwAAAJALiV/ZHRHRtm3buOuuu2LAgAGZpDUiMs/wKi0tjenTp8f06dOjtLQ0Mz0iMgnuwIED46677oo2bdok+acAAAAA62EcAAAAgFwoiGJ3RET37t3jj3/8Y5xyyinRpk2brCS2pv8iViXB7dq1izPOOCP++Mc/Rrdu3ZL8EwAAAIBaMg4AAABAQxXEbcxXa9GiRZxzzjlx0kknxWOPPRbjxo2LiRMnxjfffJM1X+fOnWPw4MGx5557xogRI6Jdu3YJRQwAAADUl3EAAAAAGqKgit2rdejQIY455pg45phjIiKioqIiSktLIyKiU6dO0bRp0wSjAwAAAHLJOAAAAAD1UZDF7qqaNm0aXbp0SToMAAAAIA+MAwAAAFAbBfPMbgAAAAAAAACoLcVuAAAAAAAAAIqOYjcAAAAAAAAARaegn9m9dOnSWLhwYaxcubLOy/bs2bMRIgIAAAAai3EAAAAA6qKgit1ffvllPPLII/HGG2/Ehx9+GMuWLavXelKpVEyZMiXH0QEAAAC5ZBwAAACAhiiIYvfKlSvj97//fdx9991RUVERERHpdDrhqAAAAIDGYBwAAACAXEi82J1Op+Pss8+O559/PpPYplKpSKVSEl0AAADYwBgHAAAAIFcSL3b/6U9/iueeey4rsU2n09GrV6/Ydttto0OHDtG8efOkwwQAAABywDgAAAAAuZJosTudTsett96adfb28OHD4+yzz47tttsuydAAAACAHDMOAAAAQC4lWux+7733Yt68eZmzuQ855JD4zW9+k2RIAAAAQCMxDgAAAEAuNUnyzadNmxYRq87sbtmyZVx44YVJhgMAAAA0IuMAAAAA5FKixe5vvvkmIiJSqVTssssu0b59+yTDAQAAABqRcQAAAAByKdFid6tWrTKvu3XrlmAkAAAAQGMzDgAAAEAuJVrs7tGjR+b10qVLE4wEAAAAaGzGAQAAAMilRIvdO++8czRpsiqEzz//PMlQAAAAgEZmHAAAAIBcSvzK7t133z3S6XR8/vnnEl0AAADYgBkHAAAAIJcSLXZHRPz4xz+Opk2bRkTEddddl3A0AAAAQGMyDgAAAECuJF7sHjx4cPz4xz+OdDodzz33XFx77bVJhwQAAAA0EuMAAAAA5Erixe6IiNGjR8d5550XqVQq/vCHP8QxxxwTr732WqxcuTLp0AAAAIAcMw4AAABALjRLOoBjjz0287p9+/ZRVlYWb7/9dpx00knRqlWr2HzzzaNjx46RSqVqvc5UKhX33ntvY4QLAAAANIBxAAAAAHIl8WL3m2++mZXAplKpSKfTERGxdOnSmDZtWp0S3HQ6Xaf5AQAAgPwxDgAAAECuJF7srokkFQAAADYexgEAAACoj4Iodq8+gxsAAADY8BkHAAAAIBcSL3Z/9NFHSYcAAAAA5IlxAAAAAHKlSdIBAAAAAAAAAEBdKXYDAAAAAAAAUHQUuwEAAAAAAAAoOok/s5u6mT17drz33nvx5ZdfxpIlS6Jly5bRtWvX2HrrrWOHHXaIFi1aJB0iAAAAAAAAQKNT7C4ClZWV8fjjj8d9990XH3zwwVrna968eQwaNChOOeWU2HvvvfMYIQAAAAAAAEB+FWSx+8MPP4wXXngh3nnnnZgxY0aUlZXF4sWLI5VKxZQpU6rNv2DBgli0aFFERLRo0SK6du2a75Abzb///e8499xzY9KkSeudt7y8PN58883YZZddFLsBAAAoGsYBAAAAqI+CKnZPnTo1rrjiihg/fnxmWjqdXu9y48ePj7POOisiIlq3bh2vvfZatG7dutHizJePP/44jj/++Pjqq68y01KpVAwYMCB22GGH6NKlSyxfvjxza/OZM2cmGC0AAADUjXEAAAAAGqJgit2PPvpoXHLJJbF8+fJIp9ORSqUy/5ZKpdaZ7A4fPjw222yz+PLLL2Pp0qXxzDPPxMiRI/MQdeOZP39+nHTSSVmF7n333TcuvPDC6N27d43LTJs2LR599NFo3759vsIEAACAejEOAAAAQEM1STqAiIhnnnkm/vd//zeWLVuWmZZOp2OzzTaLHXfccb1ndTdp0iS+//3vZ9pjx45ttFjz5fLLL485c+Zk2qNHj46bb755rYXuiIi+ffvGBRdcEKeeemo+QgQAAIB6MQ4AAABALiRe7J47d25ccMEFERGZs7iPOuqoeO6552Ls2LFx44031mo9w4cPj4hVyfFbb73VOMHmyeuvvx5PPPFEpj18+PA4++yzE4wIAAAAcsM4AAAAALmS+G3Mb7755li6dGlERDRt2jSuvfbaOOCAAzL/vuZtzNZl5513jmbNmsXKlSujtLQ0Zs6cGZtvvnmjxNzYbr/99szr5s2bx4UXXphgNAAAAJA7xgEAAADIlUSv7K6oqIh//vOfkUqlIpVKxUknnZSV4NZFs2bNYptttsm0P/vss1yFmVczZ86MN954I9MeOnSoZB0AAIANgnEAAAAAcinRYvekSZNi0aJFkU6no1mzZnHyySc3aH09evTIvF7zedfF5Mknn8x6NtnBBx+cYDQAAACQO8YBAAAAyKVEi90zZsyIiFW3KNt5552jXbt2DVrfmssvWrSoQetKyqRJk7Lau+66azKBAAAAQI4ZBwAAACCXEn1m9/z58zOvN9tsswavb83nelVUVDR4fUl4//33M6+7d+8em266aURETJ8+PR599NF49dVXY/bs2bF06dLYZJNNYuutt47vfOc7MWLEiOjSpUtSYQMAAMB6GQcAAAAglxItduc6KS0rK8u8bt++fYPXl28LFy6MuXPnZtqbb755rFy5Mm699da45ZZbYuXKlVnzL1myJGbNmhWvvvpq3HjjjXHSSSfF6aefnvW5AgAAQKEwDgAAAEAuJVrs7ty5c+b1mkXe+vr4448zrzt16tTg9eVbaWlpVrtr167xi1/8Ih577LH1LrtkyZK44YYb4qOPPorrrrsumjWr21erQE5DrNl/9CUak75GPulv5Iu+Rj7pbySt0McBbBfUVi72p/obkCupVCon+xTHiuSLvkY+6W8bvkSL3atvWZZOp+PDDz+M8vLyaN68eb3W9fnnn0dJSUmmvf322+ckxnxauHBhVvu1117LTGvVqlWMGjUqvv/978eWW24Z5eXlMXXq1PjLX/4Sjz/+eKTT6YiIePbZZ+Paa6+N8847r07vXYwnB1CYOnbsmHQIbCT0NfJJfyNf9DXySX8jCYU+DiA3pj7quz812ArkSiqVyvlvmGNF8kVfI5/0tw1TkyTffNCgQdGqVatIpVKxbNmy+Oc//1nvdd1///2Z1126dIltttkmFyHm1ZIlS7LaqwvdnTp1igcffDDOPvvs2H777aNVq1bRvn372HXXXeOqq66Kq666Kpo0+c9Xedddd8VHH32U19gBAABgfYwDAAAAkEuJXtndokWL2GOPPeKll16KiIjrrrsuhg0bFh06dKjTet5555146KGHMmfE7r///rkONS9atGhR4/RLLrkkdtxxx7Uu94Mf/CDef//9uPfeeyNi1Rnyd911V1x11VW1fu+qt1CHukilUpkzosrKyjJ3GoBc09fIJ/2NfNHXyCf9rTBszFcPF/o4gNyY2srF/tQ+GMiVdDqdk98wx4rki75GPulvhSmXeXGixe6IiNNOOy1eeumlSKVSUVJSEieccELcdttt0aVLl1ot/8Ybb8RPfvKTqKysjHQ6Hc2aNYsTTjihkaNuHG3btq02bdttt40DDjhgvcuecsop8ec//znKy8sjIuKll16KysrKrCu+18XGTa6k02n9ibzQ18gn/Y180dfIJ/2NpBTyOIBtgvqo7/5UfwNypTGO6xwrki/6Gvmkv22YEr2NeUTELrvsEgcffHCk0+lIpVLx/vvvx0EHHRQ333xzfPbZZ1FZWVltmYqKihg3blycffbZcfzxx2fOxEilUnHMMcdE7969E/hLGq6mYvc+++xTq2W7du0aAwYMyLTLysrik08+yVlsAAAAkAvGAQAAAMiVxK/sjoi4/PLL4/PPP48pU6ZEKpWKBQsWxE033RQ33XRTNG/ePGvegw46KP7973/HypUrIyIyyW06nY5BgwbFz372syT+hJzo0qVLNG/ePHN1dkREnz59ar18375945133sm0S0pKom/fvjmNEQAAABrKOAAAAAC5kPiV3RERrVq1ijvuuCP22GOPTNIasSqBXbFiRVb7888/j/Ly8sxtBlYnuN/5znfi9ttvj6ZNmyb2dzRU8+bNY4sttsiatvo5ArVRdd6ysrKcxAUAAAC5ZBwAAACAXCiIYndEROfOnePuu++On/3sZ7HJJptkJbGr/7/mfxGrkt727dvH2WefHbfffnu0a9cusfhzZbvttstqr1ixotbLVp23ZcuWOYkJAAAAcs04AAAAAA1VELcxXy2VSsVJJ50UxxxzTDzxxBPx+uuvxzvvvBNz587NemZXx44dY9CgQbHXXnvFiBEjon379glGnVtDhgyJZ555JtMuKSmp9bJz5szJam+yySY5iwsAAAByzTgAAAAADVFQxe7VWrZsGT/84Q/jhz/8YUSsOnO7rKwsysvLo1OnTtWe37Uh2XfffeOyyy7LnNE+YcKEOPbYY9e7XDqdjkmTJmXaTZs2jR122KGxwgQAAICc2ZjHAQAAAKi/grmN+bqkUqno1KlTdOvWbYNPcHv06BGDBw/OtMeOHRvz589f73KvvvpqfPnll5n2gAED3M4NAACAorQxjQMAAABQf0VR7N7Y/PjHP868Xr58eVx66aXrnH/x4sVx+eWXZ0075phjGiU2AAAAAAAAgEKg2F2A9txzz/je976XaT/55JNx/vnnx8KFC6vNO2PGjDj++OPj888/z0zbeeed46CDDspHqAAAAAAAAACJKMhndhNx1VVXxeGHH54pYv/973+PF154Ifbee+/YYostory8PKZNmxZvvPFGlJeXZ5br3Llz3HDDDdGkifMYAAAAAAAAgA2XYneB6tixY9xxxx1x1llnxQcffBAREQsXLownn3xyrctss802cdttt0XPnj3zFSYAAAAAAABAIhIvdg8fPjzn60ylUvH888/nfL351rt373jooYfirrvuioceeihmzZpV43ybbrppHHfccfGjH/0oWrVqlecoAQAAoPaMAwAAAJAriRe7Z82aFalUKtLpdM7WmUqlcraupDVv3jxOPfXUOOWUU+K9996Lzz//PL766qtIpVLRuXPn2HHHHWOHHXZIOkwAAACoFeMAAAAA5Erixe7VGpqYptPpnCfLhSSVSsWAAQNiwIABSYcCAAAADWYcAAAAgIZKvNhd1+dLV1ZWRllZWSxdujQi/pMct27dOjbZZJOcxwcAAADkjnEAAAAAciXxYvfYsWPrtdzs2bNj7Nixcc8998TMmTOjoqIiTjvttDj00ENzHCEAAACQK8YBAAAAyJUmSQdQX5tttlkcffTR8Y9//CMOOuigWLFiRfzqV7+KBx54IOnQAAAAgBwzDgAAAEBVRVvsXq1Vq1ZxzTXXxODBgyOdTsfll18eU6ZMSTosAAAAoBEYBwAAAGC1oi92R0Q0bdo0LrjggoiIqKioiJtuuinhiAAAAIDGYhwAAACAiA2k2B0RMWDAgOjZs2ek0+l45ZVXYv78+UmHBAAAADQS4wAAAABsMMXuiIjtt98+Ilad1T1x4sSEowEAAAAak3EAAACAjdsGVexu165d5vWcOXMSjAQAAABobMYBAAAANm4bVLF7zVuWLV68OMFIAAAAgMZmHAAAAGDjtsEUu5cvXx6TJk3KtDt16pRYLAAAAEDjMg4AAADABlPsHjNmTNZZ3Ntuu22C0QAAAACNyTgAAAAAzZIOoKEWLFgQN998c9x3332RSqUinU5Hhw4dYuDAgUmHBgAAAOSYcQAAAABWS7zYfdNNN9V5mYqKili4cGF88sknMWHChCgvL490Oh0REalUKo477rho2rRprkMFAAAAGsg4AAAAALlSEMXuVCpV7+XXTG7T6XQMGjQoTjrppFyFBwAAAOSQcQAAAABypeif2b06QU6n03HggQfGbbfdFi1atEg4KgAAAKAxGAcAAABgtcSv7I74z1nZ9dGtW7fYc88947DDDotdd901h1EBAAAAjcE4AAAAALmQeLH7vvvuq/MyTZs2jXbt2kWXLl2ia9eujRAVAAAA0BiMAwAAAJAriRe7hwwZknQIAAAAQJ4YBwAAACBXiv6Z3QAAAAAAAABsfBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEWnWdIB3HTTTYm995lnnpnYewMAAMDGyDgAAAAAuVIQxe5UKpXIe0tyAQAAIL+MAwAAAJAriRe715ROp2ucXjUJru1863qfpBJrAAAAYBXjAAAAADREQRS710xa10w+V0+vTVKbTqfXOh8AAABQOIwDAAAAkAuJF7vvu+++iIiYPn16XHPNNbFgwYJIp9PRrFmz2GuvvWLAgAGx1VZbRfv27SMiYuHChfHFF1/E5MmT49VXX42VK1dGKpWKjh07xs9+9rPYcsstk/xzAAAAgHUwDgAAAECuJF7sHjJkSEyYMCGT4KZSqTj66KPj9NNPj86dO69z2fnz58fNN98cDzzwQCxYsCCuvvrquPXWW2Pw4MF5ih4AAACoC+MAAAAA5EqTpAOYO3dunHbaaVFWVhbNmjWL66+/Pn75y1+uN8GNiOjcuXNcdNFFcf3110fTpk1jwYIFcdppp0VJSUkeIgcAAADqyjgAAAAAuZJ4sfvGG2+MsrKySKVSMXr06Nh///3rvI79998/Ro8eHRERCxYsiBtuuCHXYQIAAAA5YBwAAACAXEm02L1s2bJ48sknIyKiVatWccIJJ9R7XSeeeGK0atUq0ul0PP3007Fs2bJchQkAAADkgHEAAAAAcinRYvfbb78dixcvjlQqFbvssku0bt263utq3bp1DBw4MCIilixZEm+//XaOogQAAABywTgAAAAAuZRosXvOnDmZ1126dGnw+tZcx5rrBgAAAJJnHAAAAIBcapbkm8+fPz/zeuHChQ1e36JFi2pcNwAAAJA84wAAQCEYNmxYlJSUJB3GOnXv3j3Gjh2bdBhFxfcKG6dEi90dO3aMiIh0Oh1Tpkxp0LrS6XR88MEH1dYNAAAAFAbjAABAISgpKYnZs2cnHQY55nuFjVOixe7evXtnXn/99dfx7LPPxv7771+vdT377LMxb968GtcNAAAAJM84AABQSFJNmkT7rt2TDiPLwnklka6sTDqMouZ7hY1LosXu3XbbLdq1axeLFy+OdDodl112Wey0007Rq1evOq3n3//+d1x22WWRSqUinU5H27ZtY8iQIY0UNQAAAFAfxgEAgELSvmv3uPDpyUmHkeWKAwfEgrmuTm4I3ytsXJok+eYtWrSIkSNHRjqdjlQqFXPnzo0jjzwyXn755Vqv4+WXX46jjz465s2bl1nPIYccEs2bN2/EyAEAAIC6Mg4AAABALiV6ZXdExE9/+tN45plnYt68eZlEd/To0bHzzjvHwQcfHLvssktsueWW0a5du4iIWLRoUUyfPj0mTZoU//znP+P999/PJLcREd26dYuf/OQnSf5JAAAAwFoYBwAAACBXEi92t2vXLv7whz/EqFGjoqysLHMLssmTJ8d77723zmXT6XRERGaZTp06xe23355JiAEAAIDCYhwAAACAXEn0Nuar7bDDDvHHP/4xtt9++8zZ2asT13X9t+Z8q9exww47JP3nAAAAAOtgHAAAAIBcKIhid0TEdtttF4888kicf/750bNnz8zZ2qutTmjXlE6no2fPnnH++efHI488Etttt10+QwYAAADqyTgAAAAADZX4bczX1KxZszj++ONj1KhR8dZbb8U777wT77//fnz99ddRVlYWEREdO3aMLl26RP/+/eNb3/pW7LbbbtWSXwAAAKDwGQcAAACgIQqq2L1aKpWKIUOGxJAhQ5IOBQAAAGhkxgEAAACoj4K5jTkAAAAAAAAA1JZiNwAAAAAAAABFR7EbAAAAAAAAgKJTkM/sjoj48ssv4+23344ZM2ZEWVlZLF68OCIifvOb3yQcGQAAAJBrxgEAAACoq4IqdqfT6Xj88cfjrrvuimnTplX7t1QqVWOS+9xzz8X9998fERGdOnWKG264IS/xAgAAAPVnHAAAAICGKJhid0lJSZx77rnxzjvvRMSqpDYiIpVKZV6vzbe+9a0499xzY8WKFZFKpWLChAkxePDgRo8ZAAAAqB/jAAAAADRUQTyzu6SkJA4//PB45513qiW0q8/kXpfOnTvHfvvtl2k/9dRTjRInAAAA0HDGAQAAAMiFxIvdFRUVMXr06JgzZ05mWufOneP000+Pe++9N+6+++71ntEdETF8+PDM63HjxjVKrAAAAEDDGAcAAAAgVxK/jflf//rX+PDDDzNnbe+///5x5ZVXRps2bSIiYtasWbVaz3e+852IWHUG+KeffhplZWXRsWPHxgkaAAAAqBfjAAAAAORK4ld233nnnZnXu+66a1x//fWZBLcuOnbsGD169Mi0P/3005zEBwAAAOSOcQAAAAByJdFi98yZM2P69OmZ9v/+7/9Gkyb1D2mrrbbKvJ4xY0ZDQgMAAAByzDgAAAAAuZRosfu9996LiIhUKhVbbrll7LDDDg1aX4cOHTKvy8rKGrQuAAAAILeMAwAAAJBLiRa758+fn3m93XbbNXh9rVq1yrxeunRpg9cHAAAA5I5xAAAAAHIp0WL3kiVLMq9bt27d4PUtWrQop+sDAAAAcsc4AAAAALmUaLG7U6dOmde5uN3Y7Nmza1w3AAAAkDzjAAAAAORSosXuzp07R0REOp2Ojz76qEHrWrx4cUybNi3T7tWrV4PWBwAAAOSWcQAAAAByKdFi9y677JJ5/dVXX8X7779f73U9/vjjUVFRERERLVq0iAEDBjQ4PgAAACB3jAMAAACQS4kWu7t16xZ9+/bNtG+88cZ6rWfBggVx2223RSqVilQqFbvuumu0aNEiV2ECAAAAOWAcAAAAgFxKtNgdEXHkkUdmXr/yyisxZsyYOi2/dOnS+OlPfxpz5syJdDodERHHHntsTmMEAAAAcsM4AAAAALmSeLH70EMPjd69e0fEqmd23XjjjXHuuefGrFmz1rvsK6+8EoceemiMGzcuczZ3//79Y+jQoY0dNgAAAFAPxgEAAADIlWaJB9CsWVx//fVxzDHHxLJlyyKdTseTTz4ZTz31VOy8886ZBHi122+/Pb744ot4/fXXo6SkJNLpdKRSqUin09GhQ4e49tprE/pLAAAAgPUxDgAAAECuJF7sjojo379/XHvttXHOOefEsmXLIiKisrIyJk+eHJMnT87Ml06n47rrrsu8johMgtuuXbv4/e9/H5tvvnn+/wAAAACg1owDAAAAkAuJ38Z8tX322Scefvjh2G677TIJ7Gqrb022OqFdPS1iVbK7zTbbxIMPPhh77rln3uMGAAAA6s44AAAAAA1VEFd2r7bddtvF448/Hs8880z88Y9/jEmTJsXKlSurzbf6lmX9+vWLH/3oRzFy5Mho0qRg6vYAAABALRgHAAAAoCEKqtgdsepM7QMPPDAOPPDAWLp0aUyaNCnmzJkTpaWlUV5eHptsskl06dIlBg4cGJ07d046XAAAAKABjAMAAABQX4kWuysqKmLp0qWZdps2bbLOzG7durVbkgEAAMAGwjgAAAAAuZToPb/+9re/xW677Ra77bZb7LHHHvHVV18lGQ4AAADQiIwDAAAAkEuJXtn99ddfRzqdjoiIfv36Rffu3ZMMBwAAAGhExgEAAADIpUSv7G7dunVErHo+12abbZZkKAAAAEAjMw4AAABALiVa7O7atWuSb1/ULrvssth+++2z/rvggguSDgsAAADWyjgAAAAAuZRosXubbbbJvJ4zZ06CkRSXSZMmxZ/+9KekwwAAAIA6MQ4AAABALiVa7N5hhx1iyy23jHQ6HR988EGUlZUlGU5RKC8vj4suuigqKyuTDgUAAADqxDgAAAAAuZRosTsi4tBDD42IiIqKirj99tsTjqbw3X777TFt2rSIiOjWrVvC0QAAAEDdGAcAAAAgVxIvdp9wwgkxcODASKfTcc8998STTz6ZdEgF67PPPotbb701IiJat24d55xzTsIRAQAAQN0YBwAAACBXEi92N2nSJG688cbYZZddoqKiIs4999y46KKLYsaMGUmHVlDS6XRcdNFFsWLFioiIOP3006NXr14JRwUAAAB1YxwAAACAXGmWdAA33XRTRETsvvvu8cknn8TixYvjkUceiUceeSS222676NevX3Tu3Dnatm1bp/WeeeaZjRFuYh588MF4++23IyKib9++cfzxx8eECRMSjgoAAADqxjgAAAAAuVIQxe5UKpVpp1KpSKfTERHx8ccfxyeffFKv9W5ISW5JSUn87ne/i4hVn8/FF18czZs3TzgqAAAAqDvjAAAAAORK4sXumqyZ9NZVOp1u0PKF6NJLL42FCxdGRMRhhx0WgwcPTjgiAAAAyB3jAAAAANRHQRS7V5/BTXXPPvtsPPfccxER0aVLlzj33HMTjggAAAAaxjgAAAAAuZB4sfu+++5LOoSCtXDhwrj00ksz7QsuuCA6duyYYEQAAADQMMYBAAAAyJXEi91DhgxJOoSCddVVV8XcuXMjIuLb3/52/OAHP2i093LLNxqi6vP2oLHoa+ST/ka+6Gvkk/5GISjkcQDbBbWVi/2p/gbkSiqVysk+ZWM6ViyGvy9X32shaqy+Vgyf14b8vRaqjWnftrFq9GL3FVdckXl9xhlnRIcOHRr7LTcIb731Vjz88MMREdGiRYv4v//7v0Z9v06dOjXq+tl4uPsA+aKvkU/6G/mir5FP+huNpZjHAeTG1Ed996cGW4GGWjR/XkREzJkzJ/r3759wNGvXo0ePePvtt5MOI0sx7INTqVTBHZvsuuuuMWfOnKTDWKtCjm21QvxeNyby4A1Toxe777333swPx3HHHbfeJPett97KvN5ll12iRYsWjRpfIVqxYkVcdNFFmWeYjR49OrbaaqtkgwIAAIBaMA4AAPmRrqyIiIjKysqYNWtWwtGwMZgzZ46+BhScvNzGPJ1O1/pMqWOOOSYz7wsvvBA9e/ZszNAK0s033xyff/55RERsvfXWcfLJJzf6e5aWljb6e7DhSqVSmTOiysrKMidqQK7pa+ST/ka+6Gvkk/5WGDaGKzmKdRxAbkxt5WJ/ah8M5EqqSZNo37V70mFUs3BeSaQrKyOdThfcb2wx7IML+XMr1D63YO7spENYr0L8Xjd08uDClMu8OPFndtekLknxhmbq1Klx5513ZtoXX3xxXs5qt3GTK+l0Wn8iL/Q18kl/I1/0NfJJf6OQFMo4gG2C+qjv/lR/A3KlfdfuceHTk5MOo5orDhwQC+bOLsjjzkKLpyaF/LkVap/7xa7dI11ZmXQY61SI3+vGxOe/YWqSdAA1KYQENwmVlZVx0UUXRXl5eUREHHLIIbH77rsnHBUAAAA0ro11HAAAAICGKchi98Z6VsX9998f7777bkSsunz/vPPOSzgiAAAAaHwb6zgAAAAADVOQxe6N0bJly+L666/PtM8777zo3LlzcgEBAAAAAAAAFLCCfGb3xmjFihWxZMmSTPuiiy6Kiy66aJ3LVD3z/e9//3s8/vjjmfbIkSPjN7/5TW4DBQAAAAAAACgAit0FqqKios7LpNPprOUqKytzGRIAAAAAAABAwXAbcwAAAAAAAACKjiu7C0SHDh1i6tSpdVpm/Pjxceyxx2bahxxySFx55ZW5Dg0AAAAAAACg4LiyGwAAAAAAAICio9gNAAAAAAAAQNHJy23MU6lURERMmjQpZs2aVevl6jr/mnbbbbd6LQcAAAA0jHEAAAAA8iFvz+xOp9Nx7rnnNtr8a0qlUjFlypR6LQsAAAA0nHEAAAAAGlveit2pVCrS6XSt5lutNvMDAAAAhcc4AAAAAI0tb8XuiOwEtjHmj5AYAwAAQKEwDgAAAEBjavRid8+ePRv7LTZau+++e0ydOjXpMAAAACDDOAAAAAD50ujF7rFjxzb2WwAAAAAFwjgAAAAA+dIk6QAAAAAAAAAAoK4UuwEAAAAAAAAoOordAAAAAAAAABQdxW4AAAAAAAAAio5iNwAAAAAAAABFR7EbAAAAAAAAgKKj2A0AAAAAAABA0VHsBgAAAAAAAKDoKHYDAAAAAAAAUHQUuwEAAAAAAAAoOordAAAAAAAAABQdxW4AAAAAAAAAio5iNwAAAAAAAABFR7EbAAAAAAAAgKKj2A0AAAAAAABA0VHsBgAAAAAAAKDoKHYDAAAAAAAAUHQUuwEAAAAAAAAoOordAAAAAAAAABQdxW4AAAAAAAAAio5iNwAAAAAAAABFR7EbAAAAAAAAgKKj2A0AAAAAAABA0VHsBgAAAAAAAKDoKHYDAAAAAAAAUHQUuwEAAAAAAAAoOordAAAAAAAAABQdxW4AAAAAAAAAio5iNwAAAAAAAABFR7EbAAAAAAAAgKKj2A0AAAAAAABA0VHsBgAAAAAAAKDoKHYDAAAAAAAAUHSaJR0AAFC4hg0bFiUlJUmHsU7du3ePsWPHJh0GAAAAsIZF8+dFRERJSUnstNNOCUeTrZDHOnxuAHWj2A0ArFVJSUnMnj076TAAAACAIpOurIiIiMrKSmMLdeBzA6gbxW4AYL1STZpE+67dkw4jy8J5JZGurEw6DAAAAGAdCnFMYcHcwi8i+9wAakexGwBYr/Zdu8eFT09OOowsVxw4QJIFAAAABa4QxxR+sWv3gj+B3ucGUDtNkg4AAAAAAAAAAOpKsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOg0SzoA1q20tDSmTZsW06dPj9LS0kin09GxY8fo2bNnDBw4MNq3b590iAAAAAAAAAB5p9hdYCorK+Ptt9+O5557Lt54442YNm3aWudNpVKx5557xqhRo2Lo0KF5jBIAAAAAAAAgWYrdBebAAw+M6dOn12redDodr7/+erz++utx8MEHxyWXXBLt2rVr5AgBAAAAAAAAkqfYXWDmz59fbdpWW20VAwYMiK5du0bLli1jzpw5MW7cuJgzZ05mnn/+858xd+7cuPPOO6Nly5b5DBkAAAAAAAAg7xS7C1SvXr3i0EMPjUMOOSR69OhR7d8rKiriL3/5S1xxxRWxfPnyiIh466234vrrr4/zzz8/3+ECAAAAAAAA5JVid4Hp2bNnHHfccTFy5Mho2rTpWudr2rRpHHnkkdGzZ88YPXp0VFZWRkTE/fffH6NGjYru3bvnK2QAAAAAAACAvGuSdABke/TRR+OHP/zhOgvdaxo6dGgcfPDBmXZ5eXm88MILjRUeAAAAAAAAQEFQ7C4wzZrV/WL7NYvdERHvvfdersIBAAAAAAAAKEiK3RuALbbYIqs9b968hCIBAAAAAAAAyA/F7g3A4sWLs9r1uTocAAAAAAAAoJgodm8Apk6dmtXu0aNHQpEAAAAAAAAA5Idi9wbg8ccfz2rvscceCUUCAAAAAAAAkB/ud13k3nzzzXjzzTcz7fbt28dee+1V5/WkUqlchsVGZs3+oy/RmPS1/CuGzzmVSjVKnPob+aKvkU/6G6yb7YLaysX+VH8DgI1PY41jsXby4A2fYncRW7p0aVx00UVZ044//vho27ZtndfVqVOnHEXFxq5jx45Jh9Bgu+66a8yZMyfpMNapR48e8fbbbycdRpZC/tzmzp0bFRUV0bRp09h0002TDmetCvF7LYYDwFQq1ei/YxvCvo3ioK+RT/obVFeoubFj7fop5NgiomC/UwAg9xbNnxcRq37/+/fvn3A0NSvEsclckwdvmBS7i9jFF18cX3zxRaa9zTbbxEknnZRcQLCBmDNnTsyaNSvpMIpOMXxulZWVBR8jAABU5Vi7YQo5NgBg45CurIgIxyXQGBS7i9S9994bf/vb3zLtFi1axNVXXx0tW7as1/pKS0tzFBkbo1QqlTkjqqysLNLpdMIRNczq+FNNmkT7rt0Tjibbwnklka6sjHQ6XXDbbSF/bgvmzo6Iwowtoji+10LWWJ/bhrZvo3Dpa+ST/lYYCvXqYQo3N3asXT+FHFvEf+IDADYehXhcUshjk7kgDy5MucyLFbuL0NNPPx1XXnll1rRLLrmkQbe+sHGTK+l0uuj70+r423ftHhc+PTnhaLJdceCAWDB3dkF+zoX8uf1i1+6RrqwsyNgiiuN7LWT5+NwK8bthw6SvkU/6G1RXqNuEY+36KeTYIv4THwCw8SjE45JCHpvMtY3hb9wYNUk6AOpm3Lhx8fOf/zwq10iGzj333DjkkEMSjAoAAAAAAAAgvxS7i8jkyZPj9NNPjxUrVmSmnXjiiXHKKackGBUAAAAAAABA/il2F4lp06bFySefHEuWLMlMO/TQQ+O8885LMCoAAAAAAACAZCh2F4EZM2bECSecEKWlpZlpBx54YFxyySXJBQUAAAAAAACQIMXuAldSUhKjRo2Kr776KjNt6NChcc0110STJr4+AAAAAAAAYOOkWlrA5s+fH6NGjYpZs2Zlpg0ZMiRuuOGGaN68eYKRAQAAAAAAACRLsbtALVq0KE466aT47LPPMtMGDBgQt9xyS7Rq1SrByAAAAAAAAACSp9hdgJYtWxajR4+ODz74IDOtb9++cccdd0S7du0SjAwAAAAAAACgMCh2F5iVK1fGT37yk3jrrbcy07baaqu4++67o2PHjglGBgAAAAAAAFA4FLsLSDqdjgsuuCBeeumlzLRevXrFPffcE127dk0uMAAAAAAAAIAC0yzpAPiPL7/8Mv7xj39UmzZ8+PA6radXr17x3HPP5TI0AAAAAAAAgIKi2F1A0ul0jdMqKirqtJ66zg8AAAAAAABQbNzGHAAAAAAAAICi48ruAtK7d++YOnVq0mEAAAAAAAAAFDxXdgMAAAAAAABQdBS7AQAAAAAAACg6it0AAAAAAAAAFB3FbgAAAAAAAACKjmI3AAAAAAAAAEVHsRsAAAAAAACAoqPYDQAAAAAAAEDRUewGAAAAAAAAoOgodgMAAAAAAABQdBS7AQAAAAAAACg6it0AAMD/1959h0dVJW4cf1OBFEoqBgg91IAgiKwdWECRJrsioCLqUhQQ1BXEzqKgIqwroC7KuiCgIlJUBFT4sVIEBEILUgJSAoRASEiBtJnfHzy55k4myUwYkhn4fp6H58m5nHPvmeRMee+5cw8AAAAAAADgcZjsBgAAAAAAAAAAAAB4HCa7AQAAAAAAAAAAAAAeh8luAAAAAAAAAAAAAIDHYbIbAAAAAAAAAAAAAOBxmOwGAAAAAAAAAAAAAHgcJrsBAAAAAAAAAAAAAB6HyW4AAAAAAAAAAAAAgMdhshsAAAAAAAAAAAAA4HGY7AYAAAAAAAAAAAAAeBwmuwEAAAAAAAAAAAAAHofJbgAAAAAAAAAAAACAx2GyGwAAAAAAAAAAAADgcZjsBgAAAAAAAAAAAAB4HCa7AQAAAAAAAAAAAAAeh8luAAAAAAAAAAAAAIDHYbIbAAAAAAAAAAAAAOBxmOwGAAAAAAAAAAAAAHgcJrsBAAAAAAAAAAAAAB6HyW4AAAAAAAAAAAAAgMdhshsAAAAAAAAAAAAA4HGY7AYAAAAAAAAAAAAAeBwmuwEAAAAAAAAAAAAAHofJbgAAAAAAAAAAAACAx/Gt6A4ApenUqZOSkpIquhslioyM1Jo1ayq6Gybl+Xvz8vKSl5eXJMlqtcpqtTrUzh1/b+4uI+WsJCkpKUktWrSo4N6YufvzFNeeq/18KOtrmySdPXtW+fn58vHxUVhYmMv7dqXcvX8S7xHXEk/4LCcx5pzlCX9X/qYAAAAA4NlckT2v5BxfaTjH5h6Y7IbbS0pK0qlTpyq6Gx6H39u1yWrJlyRZLBb+vrjuecLzwZ37Jrl//3Bt4DPJtYm/KwAAAADgavOU7Mk5torFZDc8hpe3t4LDIiu6GybpZ5NktVgquhsl4vd2bXLHv+uFM7yZo2K48/PBHfsmuXf/eI+4drnjeJMYc1fKHf+u/E0BAAAA4NrijtlT4hybu2CyGx4jOCxSL6zcVdHdMJncvZXbT/Dxe7s2uePfdUK7yOvmzRPuxZ2fD+7YN8m9+8d7xLXLHcebxJi7Uu74d+VvCgAAAADXFnfMnhLn2NyFd0V3AAAAAAAAAAAAAAAAZzHZDQAAAAAAAAAAAADwOEx2AwAAAAAAAAAAAAA8DpPdAAAAAAAAAAAAAACPw2Q3AAAAAAAAAAAAAMDjMNkNAAAAAAAAAAAAAPA4THYDAAAAAAAAAAAAADwOk90AAAAAAAAAAAAAAI/DZDcAAAAAAAAAAAAAwOMw2Q0AAAAAAAAAAAAA8DhMdgMAAAAAAAAAAAAAPA6T3QAAAAAAAAAAAAAAj8NkNwAAAAAAAAAAAADA4zDZDQAAAAAAAAAAAADwOEx2AwAAAAAAAAAAAAA8DpPdAAAAAAAAAAAAAACPw2Q3AAAAAAAAAAAAAMDjMNkNAAAAAAAAAAAAAPA4THYDAAAAAAAAAAAAADwOk90AAAAAAAAAAAAAAI/DZDcAAAAAAAAAAAAAwOMw2Q0AAAAAAAAAAAAA8DhMdgMAAAAAAAAAAAAAPA6T3QAAAAAAAAAAAAAAj8NkNwAAAAAAAAAAAADA4zDZDQAAAAAAAAAAAADwOEx2AwAAAAAAAAAAAAA8DpPdAAAAAAAAAAAAAACPw2Q3AAAAAAAAAAAAAMDjMNkNAAAAAAAAAAAAAPA4THYDAAAAAAAAAAAAADwOk90AAAAAAAAAAAAAAI/DZDcAAAAAAAAAAAAAwOMw2Q0AAAAAAAAAAAAA8DhMdgMAAAAAAAAAAAAAPI5vRXcApUtNTdX27dt1+vRpZWRkKCIiQrVr11abNm3k4+NT0d0DAAAAAAAAAAAAgHLHZLcbO3LkiN5991393//9n3Jzc4v8f3h4uPr3769hw4bJ39+/AnoIAAAAAAAAAAAAABWD25i7qWXLlun+++/XDz/8YHeiW5KSk5M1Y8YM9e/fXydOnCjnHgIAAAAAAAAAAABAxeGb3W5o3bp1Gj9+vCwWi7GtXr166tChg6pXr65jx45p7dq1unTpkiQpPj5ew4YN0xdffKGgoKCK6jYAAAAAAAAAAAAAlBsmu93MmTNnNHbsWGOi28vLS+PGjdPgwYPl7f3HF/FTUlL09NNPa8uWLZKkQ4cO6ZVXXtG0adMqpN8AAAAAAAAAAAAAUJ64jbmb+eCDD5SZmWmUR40apSFDhpgmuiUpJCREH3/8sRo2bGhsW7FiheLj48utrwAAAAAAAAAAAABQUZjsdiNnz57VokWLjHJ0dLSGDh1abP1KlSrp5ZdfNspWq1UffPDBVe0jAAAAAAAAAAAAALgDJrvdyE8//aTc3Fyj/MADD8jPz6/ENh07dlSDBg2M8rp165SVlXXV+ggAAAAAAAAAAAAA7oDJbjeyZs0aU7l79+4OtevWrZvxc3Z2tjZs2ODSfgEAAAAAAAAAAACAu2Gy241s27bN+DksLEx16tRxqF2bNm1M5a1bt7q0XwAAAAAAAAAAAADgbpjsdhNJSUlKT083ys2aNXO4bfPmzU3lhIQEl/ULAAAAAAAAAAAAANwRk91u4vDhw6ZyVFSUw23DwsJMa3sfOXLEZf0CAAAAAAAAAAAAAHfkW9EdwGVJSUmmcs2aNR1u6+XlpcjISJ04ccLuvhzdh7ty574V8PLycrt+ult/7HHH35vkGb87XJvc8Tnhbv3B9cMdnw9XS+HHeS0+Zk95TNfLmHPVePOE39X18jeFa7nrmHHXfgEAAODa4Y4Zyt3644nc8e/qal5Wq9Va0Z2AtGDBAr3++utG+YUXXtCjjz7qcPtevXpp//79RnnXrl2qVKmSK7tYYWrXrq3ExER5eXsrOCyyortjkn42SVaLRd7e3rrhhhsqujsmp06dksVi4fdWBu78u7tw5pQk0TcnuXPfJPd+TvB8KBt37pvk3v1z5+eDJN10003atm1bRXfDLnftmzu/jkiMubJy579rwd+0Vq1axgXBgKdz51zszp8r3Llvknv3j76VjTv3TXLv/tG3snHnvknu3T/6Vjbu3DfJvfvnzn1z51zsztlT8oy/6/WQjflmt5vIysoylZ2dqLatn5mZec1Mdl/rT0IAAAAAAEpCLgYAAAAA+1iz201kZ2ebyoXX4HaEv79/ifsDAAAAAAAAAAAAgGsJk91uwvZb2Lm5uU61z8nJKXF/AAAAAAAAAAAAAHAtYbLbTQQEBJjKzn4z27Z+YGDgFfcJAAAAAAAAAAAAANwVk91uwnayOzMz06n2hev7+vryzW4AAAAAAAAAAAAA1zQmu91EZGSkqZyUlORwW6vVaqpvuy8AAAAAAAAAAAAAuNYw2e0mGjZsaConJiY63Pbs2bOmNb4bNGjgsn4BAAAAAAAAAAAAgDtisttNREREKDg42Cjv27fP4bbx8fGmMpPdAAAAAAAAAAAAAK51THa7kZtuusn4+dy5czp27JhD7bZv324qt2/f3qX9AgAAAAAAAAAAAAB3w2S3G+ncubOpvHLlSofarVq1yvi5UqVKuvXWW13aLwAAAAAAAAAAAABwN15Wq9Va0Z3AZWfPntVdd91lrL8dHR2tFStWyM/Pr9g2mzZt0qOPPmqUu3btqvfff/9qdxUos2PHjik+Pl6nT5+WxWJRZGSkGjdurJiYmIruGirIqVOntHv3bp08eVJZWVmqVKmSwsLCVL9+fTVt2lT+/v5l2i9jDeWFsYYCubm5OnDggPbv36+0tDRlZ2crKChI4eHhatmypWrVqnXFx2C8oYDFYtHu3buVkJCglJQU+fr6KiIiQjExMWrUqJFLjsF4AwDX4PUU9pCF4ckYZyhADkZ5IQOjJL4V3QH8ISwsTA888IDmz58v6fIT69///reeeuopu/Wzs7M1adIko+zl5aURI0aUS19xbejUqZMSExPL1Hb16tWqW7euw/XXrVunDz74QDt27LD7/02aNNETTzyhXr16lak/8CwWi0XLly/X3LlztXfv3mLr+fn5qU2bNho6dKhuv/12h/bNWLt+Pfzww9qyZcsV72fkyJEaNWpUqfUYayiQlJSk2bNna9myZbpw4UKx9Ro3bqyBAweqf//+8vHxceoYjDcUSEtL05w5c7Rw4UKlpaXZrdOkSRMNHjxY/fr1K9MxGG8ArmXkYFQksjBcjRyMikIORnkhA8MRfLPbzSQlJemee+5RZmampMsT2OPGjdPgwYPl7f3HXedTUlL09NNPmz7M9OjRQ9OmTSv3PsNzlUfIt1qtevPNNzV37lyH9tujRw9NmTKlzFcww/2dOHFCzz77rOLi4hxu87e//U3PPfdciXUYa3BVyH/++ef1+OOPF/v/jDUU9uOPP2rChAnFBi57WrVqpZkzZyoiIqLUuow3FLZr1y49+eSTSk5Odqj+3XffralTpyooKMih+ow3ANcDcjAqClkYVwM5GBWBHIzyQgaGo/hmt5uJjIzUtGnTNGLECFksFlmtVk2ZMkWff/65brnlFlWvXl1Hjx7V2rVrdenSJaNdo0aNNHHixArsOTydl5eX6YIKR+o74t133y3yZtG2bVvFxsbKx8dH+/fv18aNG1Vw3c13330nHx8fvfPOO453Hh7j4MGDGjJkiOkDipeXl1q1aqWmTZsqNDRU2dnZxu3cjh8/7vC+GWvw9vZ2+iphScrPzzd+9vLyUteuXUusz1hDgfXr12vMmDHGEjSS5Ovrq1tuuUUxMTGqUqWKzp8/rx07dmjfvn1GnV27dmnw4MFatGhRqQGM8YYCu3bt0kMPPaTs7GxjW0BAgG699VbVr19fFotFCQkJ2rhxo1Fn7dq1evrpp/XRRx/J17f06Md4A3C9IQejvJCFcbWQg1HeyMEoL2RgOINvdruppUuX6rXXXtPFixdLrdusWTPNmDFDtWvXLoee4VpS+Ir2vn37asqUKS7d/9q1azV8+HCjXLVqVf3rX/9Sx44dTfXi4+M1YsQInT592tj2+uuv68EHH3Rpf1CxUlJS1LdvX9PfuUuXLnrhhReKff06cOCAvv76a9WoUUPDhg0rdt+MNZTVDz/8oJEjRxrl9u3b67PPPiu2PmMNBS5duqR77rlHJ0+eNLa1b99eb7/9tqKioorU37Rpk/7+97+bTnAOHjxYEyZMKPYYjDcUyMjIUM+ePU3j7e6779Ybb7yh0NBQU91Tp05p3Lhx2rx5s7Ft6NChevbZZ0s8BuMNwPWCHIzyRhaGuyEHo6zIwSgvZGA4i8luN3b48GG9++67WrdunelKqQLh4eF64IEHNHz4cG6bgDK5miHfarWqV69eOnDggKTLV4nOmzdP7du3t1v/yJEj6t27t3EVVnh4uH788UdVrlzZZX1CxXr22Wf17bffGuXhw4dr7NixV7xfxhquxIgRI7RmzRqj/Oabbxa7vg9jDYWtWLHC9BpWr149LVmyRAEBAcW2+e2339SvXz/l5eVJkgIDA/XLL7/Y/RzHeENhH374oaZPn26Ub7nlFn3yySfFXqmenZ2tAQMGGGuBVqpUSatXr1bNmjXt1me8AbiekINR3sjCcDfkYJQVORjlhQwMZzl+ryaUuwYNGmjmzJn6+eefNWvWLL3yyit69tlnNXnyZH322Wdat26dRo8ezUQ33NKPP/5ovFlIUu/evYt9s5Ck+vXrm9YGSk5O1qJFi65qH1F+Nm7caAr3nTt3dkm4lxhrKLuUlBT9/PPPRjkgIEDdu3cvtj5jDYVt2rTJVH700UdLDPiS1LRpU3Xu3NkoZ2Zmavfu3XbrMt5Q2Pz5842fvby89Nprr5V4S7ZKlSrp1VdfNcrZ2dn697//XWx9xhsAuAavp7BFFoa7IQfjSpCDUV7IwHAWk90eoEaNGurcubMGDRqkoUOH6v7771f79u3LtB4LUF5WrlxpKg8aNKjUNg8++KBpXNvuA56r8IcLPz8/vfDCCy7bN2MNZfXNN9+Y7pzStWtXBQYGFlufsYbCkpKSTOUbb7zRoXZt27Y1lc+cOWO3HuMNBQ4ePGgaJ+3atVP9+vVLbde6dWvFxMQY5ZUrV8pisdity3gDANfg9RS2yMJwN+RgXAlyMMoDGRhlwWQ3AJfLy8vT//73P6N8ww03qFWrVqW2i4yMNH1I2rFjh1JSUq5GF1GOjh8/rl9++cUo33nnnapTp45L9s1Yw5VYsmSJqdy3b99i6zLWYMs2MDl666oqVaqYyl5eXkXqMN5QWMFt2Aq0adPG4baF6547d07bt28vUofxBgCuwespbJGF4Y7IwbgS5GCUBzIwyoLJbgAud+DAAV24cMEol/UNKT8/3+4bEjzLihUrZLVajXKPHj1ctm/GGspq//792rdvn1GuVauWOnToUGx9xhps1a5d21Q+deqUQ+0K1ggtULdu3SJ1GG8oLDU11VSOjIx0uK1t3a1btxapw3gDANfg9RS2yMJwN+RgXClyMMoDGRhlwWQ3AJdLSEgwlZs1a+Zw2+bNm5vKhw8fdkmfUHHi4uJM5Xbt2rls34w1lJXt1ey9e/e2e2VxAcYabN1+++2m8vfff19qm/z8fK1atcoo16pVS02aNClSj/GGwi5dumQq+/v7O9y2UqVKpvKhQ4eK1GG8AYBr8HoKW2RhuBtyMK4UORjlgQyMsih+RXcA15XffvtNY8eOVXx8vM6ePStJql69umrXrq327durS5cuatq0qUP7sn2Rj4qKcrgfN9xwQ4n7gufZs2eP8XNkZKQiIiIkSUePHtXXX3+t9evX69SpU7p48aJq1Kih+vXr69Zbb1Xv3r0VGhpa4r4ZayiLvLw8ffPNN6ZtJd26TWKsoai77rpLTZo00f79+yVJixcvVqdOnXT33XfbrW+1WvX222/r999/N7Y99dRT8vYueu0p4w2FBQcHm8qFr0AvjW1de+OB8QbgekYOxtVEFoY7IQfDFcjBKA9kYJQFk90AJEn79u0z3cpIkjIyMnTixAn98ssvev/993XHHXfopZdesnurmcKSkpJM5Zo1azrcD9u6p0+fdrgt3E96errOnDljlOvUqaO8vDx9+OGH+uCDD5SXl2eqn5WVpcTERK1fv17vv/++nnjiCT355JPFXmnMWENZ/Pzzz8bJTOnyNyyio6NLbMNYgy0fHx9Nnz5dAwcOVGpqqvLz8/Xkk0+qf//+6tOnj2JiYlSlShWdP39ecXFx+vTTT7V582aj/YMPPqh+/frZ3TfjDYXZ3obN3pXpxTlw4ICpbO82g4w3ANczcjCuFrIw3A05GK5ADkZ5IAOjLJjsBuCw//3vf+rXr5+mTp2qu+66q9h6WVlZpnJgYKDDx7Cta7sveBbbNVbCwsI0YcIELVu2rNS2WVlZ+te//qXffvtN06dPl69v0bcsxhrKwvbWbaVdzS4x1mBfw4YNtWjRIr344ovasmWLLBaLFi5cqIULFxbbJiwsTKNHj1b//v2LrcN4Q2G264etX79eeXl5dt8XC8vMzNSWLVtM2+yNB8YbAJSMHIyyIAvD3ZCD4SrkYFxtZGCUBWt2A9e5yMhIDRw4UDNmzNAPP/yg7du3a8+ePVq/fr1mz56t/v37m9bFSE9P1+jRo7Vz585i92n7In8l62rwhuHZ0tPTTeUNGzYY4b5y5coaPny4li9frp07d+rXX3/V/Pnzi6wZtXr1ak2bNs3u/hlrcFZaWprWrl1rlKtUqaLu3buX2o6xhuJER0dr3rx5mjx5sqpVq1Zi3ebNm2vWrFklBnyJ8Qaz0NBQtW7d2ignJyfrq6++KrXd3LlzlZmZadqWnZ2t/Px80zbGG4DrETkYVxtZGO6EHAxXIwfjaiIDoyz4ZjdwHXvjjTfUvn17u1dFhYeHKzw8XHfccYcef/xxjRw50rgNSHZ2tsaOHauVK1fafTPIzs42lZ15w7Cte+nSJYfbwv3YvuEXBP7q1avr008/VbNmzYz/q1y5stq1a6d27drptttu07hx42SxWCRJc+bMUa9evYqsl8dYg7O+/fZb5eTkGOWuXbsqKCio1HaMNRQnISFBb7zxhjZs2FBq3fj4eD3wwAO68847NXHixGJvlcV4g63HHntMTz/9tFF+++23FRMTo7Zt29qt//PPP2vmzJl2/+/SpUumq9EZbwCuN+RglAeyMNwJORiuRg7G1UYGhrP4ZjdwHevYsWOpt/+QpLp16+rTTz9VVFSUsS0xMVGLFi2yW9/2CqfCH6hLY1u3cuXKDreF+ynuw8LEiRNN4d5Wr1699PDDDxtlq9WqOXPmFKnHWIOzli5daio7cus2ibEG+zZs2KB+/foZAd/Pz08DBw7U/PnztXXrVuMbYrNmzdIdd9xhtFu3bp369u2rhIQEu/tlvMFWt27dTLfOzczM1ODBg/X2229r//79ysnJUXZ2tuLj4zVp0iQNHz5cubm5kqSAgACjnZeXl6pUqWLaN+MNwPWGHIzyQBaGOyEHw5XIwSgPZGA4i8luAA4JDQ3Vc889Z9q2YsUKu3ULv6FIzr1h2F5ZZbsveBZ7a540bNhQ3bp1K7Xt0KFD5efnZ5T/7//+z7i6vQBjDc5ISEjQrl27jHKtWrV0yy23ONSWsQZbx44d08iRI3Xx4kVJUtWqVTV//ny9+uqrateunapWrSo/Pz+Fh4erc+fOmj17tl577TWjfUpKikaMGGG0L4zxBlteXl5666231KJFC2NbTk6OPvnkE/Xq1UuxsbFq1aqV+vbtq3nz5ikvL0+SNHr0aN1www1Gm6CgIHl7myMg4w0AikcORlmRheEuyMFwJXIwygsZGM5ishuAw7p162a6zVFcXJxDH05s18ooiW1d3jA8m72Af/fddzvUNiwsTK1atTLKaWlpOnTokKkOYw3OWLJkialsuyZeSRhrsDV16lTT7SknTpxoWlPKngEDBmjAgAFG+ejRo1qwYEGReow32FO9enXNnz9ff/nLX+Tj41Ni3SpVquiVV17RU089peTkZGN71apVi9RlvAFAycjBKAuyMNwFORiuRA5GeSIDwxlMdgNwmK+vr2JjY41yXl6ezpw5U6ReZGSkqXz69GmHj3Hq1ClTubh1XOAZQkNDTVekS1Ljxo0dbh8TE2MqJyUlmcqMNTjKYrFo+fLlpm2O3rpNYqzBLD09XT/++KNRjo6OVvfu3R1qO3ToUFN52bJlReow3lCcKlWq6I033tC3336r4cOH68Ybb1RYWJj8/PwUEhKi2NhYjR49Wt9//70GDRqktLQ0XbhwwWjfqFGjIvtkvAFAycjBKAuyMNwBORiuRA5GRSADw1GlL1IEAIWEhoaayufPn1fdunVN2xo2bGgqnzx50uH92765NGjQwMkewp34+fkpOjratB5PtWrVHG5vWzctLc1UZqzBURs2bDCdILrpppsUHR3tcHvGGgrbvXu38vPzjXL79u0d/nZEVFSUateurRMnTkiSDh48qOzsbNOaUYw3lKZBgwYaO3ZsqfV2795tKheerCnAeAOA0pGD4SyyMNwBORiuRA5GRSIDozR8sxuAU2xv11b4Q0kB2zeM+Ph4h/e/d+9eU5k3DM9newWdM+ug2Na1HW+MNThq6dKlprIzV7NLjDWYnTt3zlQODw93qn3h+haLRampqab/Z7zBVbZv324qF74lagHGGwCUjhyMsiALo6KRg+FK5GB4AjLw9YvJbgBOOX78uKkcEhJSpE7jxo1N62HExcU5vP8dO3YYP/v4+Kht27bOdxJu5eabbzaVbW+/VhLbq+Vq1KhhKjPW4IiMjAzTrbaqVKmie+65x6l9MNZQmO3JxkuXLjnV3vaEue0aT4w3uMp3331n/BwaGqo//elPReow3gCgdORglAVZGBWJHAxXIwfDE5CBr19MdgNw2KlTp3Tw4EGjHBoaqoiIiCL1fH19dccdd5ja7dy5s9T9JyUlmeq1adPG7kkEeJYuXbqYbmtke4VdcaxWq+nDho+Pj5o2bWqqw1iDI1asWGEKYX/+858VFBTk1D4YayjM9m9Y+PaUpcnNzdWxY8eMsr+/v4KDg011GG9whfXr1+v33383yr179y6ydqjEeAOA0pCDUVZkYVQkcjBcjRwMd0cGvr4x2Q3AYbNmzZLVajXKt956a7Frs9heLbpgwYJS9//555+b1n7p3r17GXsKd1KzZk3TVW5r1qxRSkpKqe3Wr19vWjOlVatWdoMZYw2lWbJkial8//33l2k/jDUUaN68uSkwbdmyRcnJyQ61/emnn5SVlWWUb7zxRrv1GG+4Ejk5OZo8ebJRrlKlih566KFi6zPeAKB45GCUFVkYFYkcDFcjB8OdkYHBZDdwHcrJydHhw4edarN48WJ9+eWXRtnLy0uPPPJIsfU7d+6smJgYo7xs2TJt3bq12PpHjhzRJ598YpTDw8P117/+1ak+wn2NGjXK+Dk7O1v/+Mc/SqyfmZmpN954w7Tt4YcftluXsYaSHDt2zPQNiqioKN1yyy1l2hdjDQUCAgLUoUMHo5ydna1JkyaV2u78+fN6++23Tds6depkty7jDWWVn5+v5557TocOHTK2jRo1SrVq1Sq2DeMNwPWAHIyKQBZGRSAH42ogB8NdkYEhMdkNXJcuXbqk++67T88884zWr1+vvLy8YusmJyfr9ddf14QJE0zb+/Tpo9jY2GLbeXl56ZlnnjHKVqtVTz75pDZt2lSkbnx8vB599FFlZ2cb20aOHKnKlSs787Dgxjp27Ki77rrLKK9YsULjxo1Tenp6kbrHjh3TkCFDdOTIEWNbbGxssWtLMdZQkq+//tpU7t27d7HfxCkNYw2FPfXUU6byypUrNXr06GKvbN+1a5cGDhyoxMREY1tYWJj69+9vtz7jDbYmTpyomTNn6sSJE8XWiY+P16BBg7Rq1SpjW5s2bTR48OAS9814A3A9IAejIpCFURHIwbhayMEoT2RgOMPLWvheTACuCxcuXFD79u2NclBQkJo1a6YGDRqoWrVq8vPz04ULF/Tbb78pLi5Oubm5pvbt2rXTf/7zH/n7+5d6rKlTp2r27NmmbW3btlWrVq3k7e2t/fv3a+PGjabbwvXq1UvvvPPOFT5KuJu0tDT179/fFNyDg4N1++23Kzo6Wrm5uTpw4IB++eUX05gLCQnR4sWLFRUVVeL+GWuwZbVa1blzZ1OoWr16terWrXtF+2WsocD06dP14Ycfmrb5+/vr5ptvVkxMjAICApSamqq4uDjt2bPHVM/Pz0+zZ89Wx44dSzwG4w0FRo8ebQT4xo0bq0WLFoqIiJC3t7fOnj2rnTt3mtaUlaQmTZro008/dXgdMcYbgGsZORgVhSyM8kQOxtVGDkZ5IQPDGUx2A9ch25DvjAEDBmj8+PEOX7lksVj05ptvat68eQ7Vv/feezVlyhRVqlSpTP2Deztx4oRGjx6tvXv3OlS/QYMG+uijjxQdHV1qXcYabP3yyy+mKzlvuukmh9bgKQ1jDYXNmDFDs2bNMq3bVJqQkBBNmTJFd955Z6l1GW8oUDjoO6Jr16568803FRwc7HAbxhuAaxk5GBWJLIzyQg5GeSAHozyQgeEMJruB61BOTo5mzpypzZs3a+/evcrJySmxfkBAgLp06aJHHnmkxFu2lWTdunWaNWuW4uLi7P5/TEyMnnjiCfXu3btM+4fnyM3N1Zw5c/TFF1+YrjQuLCIiQoMHD9ZDDz3k9C1hGGsoMH78eC1ZssQoT5o0yaXr6TDWUCA+Pl7/+c9/tGrVKtNtrWyFhobqL3/5iwYPHqzQ0FCnjsF4w7Jly/TVV18pLi6u2M9uXl5euvnmm/X44487dBKpOIw3ANcicjAqGlkY5YEcjPJCDsbVRgaGM5jsBq5zeXl5OnLkiI4dO6bTp08rMzNTeXl5Cg4OVtWqVdW4cWM1adJEPj4+Ljne0aNHtXfvXp05c0b5+fmKjIw0joHri9Vq1e7du3XkyBElJyfLy8tLISEhatasmZo2bXrF+2esobww1lAgJydH8fHxSkhI0IULF3Tp0iUFBgaqRo0aat68uRo0aFDmtfIKMN6QnZ2t3bt36+jRozp37pzy8vIUEBCg6Oho3XjjjQ7frs0RjDcA1ypyMCoSWRjXAsYZCpCDcbWRgeEIJrsBAAAAAAAAAAAAAB7Hu6I7AAAAAAAAAAAAAACAs5jsBgAAAAAAAAAAAAB4HCa7AQAAAAAAAAAAAAAeh8luAAAAAAAAAAAAAIDHYbIbAAAAAAAAAAAAAOBxmOwGAAAAAAAAAAAAAHgcJrsBAAAAAAAAAAAAAB6HyW4AAAAAAAAAAAAAgMdhshsAAAAAAAAAAAAA4HGY7AYAAAAAAAAAAAAAeBwmuwEAAAAAAAAAAAAAHofJbgAAAAAAAAAAAACAx2GyGwAAAAAAAAAAAADgcZjsBgAAAAAAAAAAAAB4HCa7AQAAAAAAAAAAAAAeh8luAAAAAAAAAAAAAIDHYbIbAAAAAAAAAAAAAOBxmOwGAAAAAAAAAAAAAHgc34ruAAAArpSfn6+ffvpJK1eu1J49e3T27FllZWXJarVKkmrVqqU1a9ZUcC8Bz5GVlaX4+HgdPXpU6enpysrKUqVKlRQYGKiaNWuqVq1aqlevnvz8/Cq6qwAAAABELgZcjVwMAO6NyW4A8GCdOnVSYmJiiXW8vb0VHBys4OBgNWzYULGxseratauaNGlSTr0sP8nJyRo1apR27NhR0V0BPJrFYtGKFSv05ZdfauvWrbJYLCXW9/f3V5MmTdS+fXvddtttat++vfz9/cuptwAAALiekYvNyMWAa5CLAcBzeFkLLukDAHgcR0J9cdq3b6/XX39dDRs2dHGvKkZ+fr4GDRpUaqDnCnagZAkJCRo/frx27dpV5n3MnDlTXbp0cWGvAAAAAPvIxX8gFwOuQS4GAM/CN7sB4Dq1detW9e3bV9OmTbsmPnz/9NNPpkAfERGhp556SjfeeKOCgoKM7b6+vPUBxdm3b58effRRpaammrZ7e3urbt26qlevngIDA5Wbm6u0tDQdPnxYZ86cqZjOAgAAAFeIXAzAFrkYADwPn2wA4Boybdo0tW7d2rTNYrEoNTVVe/fu1dKlSxUXF2f8X3Z2tp555hnNnz9fsbGx5dxb11q5cqWpPHPmTLVq1aqCegN4nqysLA0fPtwU6IOCgvS3v/1N/fr1U3h4uN12ycnJ2rBhg3744Qf973//U05OTjn1GAAAACiKXPwHcjHgHHIxAHgmJrsB4BoSFham2rVrF9keHR2tVq1aacCAAfrss880adIkFaxikZ2drcmTJ2vBggXl3V2X2rNnj/FzVFQUgR5w0scff6zTp08b5dDQUM2bN6/UWzqGh4erT58+6tOnj1JSUvTFF1+oevXqV7m3AAAAgH3k4svIxYDzyMUA4Jm8K7oDAIDy9dBDD2nIkCGmbdu2bVN8fHwF9cg1zp49a/wcGRlZgT0BPNO3335rKo8fP97ptQtDQkI0YsQItWvXzpVdAwAAAFyKXAzAHnIxAHgmJrsB4Do0bNgw+fn5mbatX7++gnrjGllZWcbPto8NQMnOnDmjo0ePGmU/Pz917969AnsEAAAAXF3kYgCFkYsBwHNxG3MAuA5Vr15dLVu21I4dO4xtCQkJDrXNzs7Wjh07dOrUKaWkpMhqtSokJETR0dG68cYb5evr2reWxMRE7du3T2fOnFFaWpqqVq2qLl26FLlKveD2c66QkZGh7du3KykpSefPn5e/v79CQkLUsGFDNW/eXF5eXi47liSlp6dr+/btOnPmjFJSUlSpUiW1b99eLVq0cKh9Xl6eduzYoRMnTig5OVl+fn5q0KCB2rdvr4CAgBLbXrhwQdu2bdPRo0d16dIlVa9eXY0bN1abNm3k7V32a+LOnj2rQ4cO6fjx47pw4YJyc3MVHBysGjVqqGXLloqOji7zvotjtVq1a9cu/f777zpz5oz8/PwUHh6um266STVr1nTJMc6fP6+dO3cqOTlZ58+flyQFBwcrOjpaTZs2VWhoaJn3ffz4ce3du1cpKSm6cOGCgoODFRYWphtvvPGqfyvjzJkzpnL16tXl7+9/VY9pT3Z2tuLi4nTq1CmdP39ely5dUmBgoKKiohQTE1PmcZOXl6edO3fq+PHjSklJUX5+vkJCQlSrVi21bdvW5Y81NzdXO3bs0MmTJ3X27FlZLBY1btxYd999d6ltDx06pAMHDiglJUUZGRmqVq2aMY5r1Kjh0n4CAABcz8jFJSMXk4uLQy6+usjF5GIAzmOyGwCuU7YhpyCgFGfnzp364IMPtGnTJl26dMlunaCgIPXo0UNPPfWUwyGkSZMmxs8333yz5s2bJ0n68ccf9fHHHysuLq5IYI+MjNT06dO1ZMkSu/vcsmWLab8FatWqpTVr1hTbl+3bt2vmzJnavHmzcnNz7dYJDQ1V7969NXToUIc/YD/88MPasmWLUd6/f78k6eDBg5o+fbp+/vln5eTkmNo88sgjRqj/+uuv9cILLxj/N3nyZN1///3KyMjQRx99pK+//tp0u7oCgYGBGjJkiEaMGFHkZEtiYqKmT5+ulStX2n2sEREReu6559S7d2+HHmN+fr62bNmiVatWadOmTfr9999LrF+zZk0NHDhQAwcOVHBwsEPHKO73YLFY9N///lefffaZTpw4Ybdtu3bt9Pzzz6t169YOHauw3NxcLVmyRAsWLNBvv/1W4gmkmJgY3XvvvfrLX/6i8PDwUvedlZWlefPmafHixaYryG01a9ZMw4YNU/fu3V1+Ukm6/PcrLCMjQ/n5+fLx8XH5sexZv3695syZo61btxZ5LhRWs2ZNde7cWf3797f7HLeVmJiomTNnavXq1UpPT7dbp0qVKrrzzjs1evRoh29P9/7772vGjBlGee7cuerQoYNSU1P13nvvacWKFUpNTTW1adq0abGh/vz58/rkk0+0fPlyJSUl2a3j7e2tNm3aaOTIkfrTn/7kUD8BAABQMnJxUeTiP5CL/0AuvvrIxeRiAGXHZDcAXKccveL74sWLeumll4qsW2RPRkaGvvjiCy1fvlxTpkwp0+2e8vLy9Oqrr+qrr75yum1Z5ebm6tVXX9XixYtLrXvu3DnNmTNHixYt0ttvv61OnTqV6ZgLFy7U5MmTlZ2dXab2x48f1xNPPFFieM7MzNSMGTMUFxenDz74wLhKd/369RozZkyxIUe6fEXz888/r8OHD2vs2LGl9mfu3LmaMmWKw/0/ffq0pk2bpi+++ELvv/++w1fr2zp37pzGjBljOmliz6+//qpBgwZp8uTJ6tmzp8P737lzp8aOHavExESH6h84cEAHDhxQXl6eRo0aVWLdn3/+WePGjdO5c+dK3e++ffs0ZswY/elPf9K//vUvh0+EOCokJMRUvnjxojZu3Kjbb7/dpcexdfbsWT3zzDPavHmzQ/VPnz6t+fPn6+DBg8YJwOLMnz9fU6ZMKfEkgXT5sa5cuVI//PCDRowYUerfrTjbtm3T2LFjiw3lxVm6dKn+8Y9/KCMjo8R6FotF27Zt05AhQ9SrVy+98cYbFfItAwAAgGsJufgP5OKiyMWXkYvJxY4iFwOoKEx2A8B1yvaDp72rsVNSUvTEE09o7969pu2VK1dWs2bNFBERIR8fH506dUp79uwxroS+ePGixowZo0mTJukvf/mLU/166623TIG+fv36qlevngICApScnKzdu3c7tb/S5ObmatiwYdqwYYNpu6+vr2JjY1WzZk1dunRJCQkJOnbsmPH/6enpGjlypN5880316dPHqWP+8MMPev31140TK2FhYWrWrJmqVaum1NRU4wr34ly4cEFDhgzR8ePHJV3+5kDr1q1Vo0YNpaena+fOnaarZ9evX6+pU6dqwoQJ2rZtm0aMGGEEnYiICDVv3lxBQUE6e/asduzYYTrR8OGHHyo2NlZdunQpsU8Wi8VULrhlXM2aNRUcHKz8/HylpKRo//79pr4lJiZq8ODB+vrrr52+FdelS5c0bNgwY0z4+/urZcuWioyMlMViUUJCgg4dOmTUz83N1QsvvKDGjRuradOmpe7/u+++0/jx44uEQn9/f7Vo0ULh4eHy9/dXamqqEhISdOrUKYf7/uWXX+q1114rcuV4rVq11LhxYwUFBSkzM1O//fabab8bN27UwIEDtXDhQgUFBTl8vNLUqVNH4eHhSk5ONra9+uqrmj17tsNXdTvrwIEDeuKJJ4q8Fnl5eSkmJkZRUVEKCgpSRkaGjh07piNHjhQZZ8WZMWOG3n///SLbGzdurLp168rHx0cnTpxQfHy88TzMz8/XjBkzlJSUpEmTJjn1WI4fP6533nnHGNsBAQFq2bKlwsPDlZWVVezJt/fee0+zZs0ybfPy8lL9+vVVt25dBQYG6sKFC9qzZ49SUlKMOsuXL1dycrI+/vhjl98iEwAA4HpCLr6MXEwuLg65mFzsKHIxgIrEqwAAXIfS0tK0Z88e0zbbD+4Wi0XPPPOMKdBHRERozJgx6tmzZ5ErJy9cuKCPP/5Ys2fPlsVikdVq1cSJE9WyZUuHApQk7d2717gS+a677tLzzz9fpF8ZGRnKyclR27ZtNXLkSGN7586djZ9bt26tadOmFdm/vQ+/06dPNwV6Ly8vDRgwQKNGjSpyVe+2bdv02muv6cCBA5Iuh4BXXnlFTZs2dfgxStK4ceNktVrVqFEjvfDCC7r11ltNt+DKz88v8SrYWbNmGeu0/f3vf1ffvn3l5+dn/H9ubq4++ugjU6j57LPP1Lt3b40ZM0Y5OTlq1KiRXnrpJXXs2NG07/Pnz+vll1/WDz/8YGybPHmyOnfuXOptwsLDw9WnTx/dddddxa5TZ7FYtHHjRr377ruKj4+XdPkEyXPPPacvv/yyxP3b+te//qXz58+rcuXKGjVqlAYOHFhkLbZdu3bpueeeM26Flpubq8mTJ+u///1vifveuXNnkUAfFRWlUaNG6d5771XlypWLtDl9+rRWrVpV6uPYtGlTkUDfs2dPDR8+XI0aNSpSf/PmzZo0aZIx7g4cOKBXXnnF7hi/Ej179tScOXOMcmJionr37q3u3burR48euvnmmxUYGOiSY6WmpmrEiBGmcR4QEKAhQ4booYceKvLcky4/99euXaulS5eWeFX6unXrigT6Dh066OWXX1bjxo1N2xMTEzVlyhStXr3a2LZo0SLFxsaqf//+Dj+eN998U5mZmapWrZrGjh2rfv36FXmNLDgJV2DJkiWmQO/t7a1BgwbpscceU1RUlKmu1WrVTz/9pDfeeEMnT56UdHkcvffee3r22Wcd7icAAAD+QC7+A7mYXGwPuZhcTC4G4Cm8rI7erwcA4HY6depkuo1Uwfo4pXnnnXf08ccfm7YtXrxYLVu2NMoff/yx3nnnHaPcokULffLJJ6Wux7Vy5UqNGTPGuCq0Q4cOmjt3brH17a0v1L9/f73++utOrcFU3BpnJfntt9/Up08f063rXnrpJT388MPFtsnMzNRjjz2muLg4Y1tsbGyJt5ezXZusoM1//vMfh267ZbsmlyQFBwdrwYIFiomJKbbda6+9poULFxrlatWqKS0tTbGxsfr000+LvQI6Ly9P999/v+lK+k8//bTICYDCkpKSFBISYjq5UJKcnByNGDFC69evN7aVNn7t/R4CAgL03//+V61atSq23cmTJ3XfffcpMzNT0uUTN6tWrVLdunWL7Vv37t1Nz622bdvqgw8+UPXq1Ut9bFarVefOnVNYWFiR/8vMzFTXrl2NteS8vLwc+qZHZmamHn/8ce3YscPY9tlnn6l9+/al9sdRKSkp6tOnT7EnlHx8fNSoUSO1atVKsbGxat26tWJiYuTt7e30sZ599lnTLSDDw8M1e/ZsNWvWzKH2ycnJdtd+y8nJUadOnUxX4nfv3l3Tpk0rcZ21f/zjH/rss8+McpUqVbRmzRq7JxekomuTSVL16tU1b968Ep+TBRITE3Xvvfca6zz6+/tr5syZuuOOO0psd+7cOQ0YMMA4SeXj46NVq1apTp06pR4TAADgWkUutr8fcvFl5OLLyMWOIReTiwF4JudfhQEAHm3hwoX65JNPTNvatGljCvSXLl0y1QkODtaHH35YaqCXLn+AHjBggFHevHlzkdu9laRhw4Z66aWXnAr0ZfWf//zHFOi7detWYqCXpMDAQE2fPt10pfTu3bu1detWh4/r7++vd99994rWl3rxxRdLDQ9Dhw41/R7T0tLk5+en6dOnl3irL19fXz322GOmbZs2bSrxWJGRkQ4Heuny72Dy5MmmNt98843D7Qu88MILJQZ66fKV54WvRrZarSWuhbV06VJToI+MjNSsWbMcCvTS5aBuL9BL0ueff24Eekl6/PHHHbqlYcG4K3xVtO3z+EqFhITo3//+tyIjI+3+f35+vvbv369FixbplVdeUe/evXXLLbdo9OjR+vHHH43bNZbm8OHDWrFihVH28fHRe++953Cgl2Q30EuXx1DhQF+rVi1Nnjy5xEAvSRMmTDAd/+LFi1qwYIHD/ZEuj0VHAr10+W9XEOgL2pYW6CUpNDRUU6dONcr5+fmlfhsDAAAARZGL/0Auto9cTC62h1xcMnIxgIrCZDcAXEPOnj2rEydOmP4dO3ZMu3fv1hdffKEBAwbotddeMwVZf3//IlcFf/vtt6Z1cAYPHqyIiAiH+2EbCNesWeNw2yFDhhS5zdHVkJOTYwoWkjR27FiH2kZFRenBBx80bfv6668dPna3bt2KvXraETfccIN69epVar2oqCjVq1fPtO2ee+5x6GrXW2+91VTet2+fU310REREhNq0aWOUC1+d7YjIyEjdf//9DtW9++67TeWCW8XZU/iqf0kaM2aMQye0HFH4KumAgAA9+eSTDre94YYbdM899xjlDRs2lHjbsrJo2rSpli5dqr/+9a8OrXmVlpamVatW6amnnlKPHj1Mt/krzhdffGFaY6xXr1666aabrqjfBZYuXWoqDxs2rMgt/Ozx8fHRmDFjTNuWLFni8HEdfU5KUlZWlhYvXmyU69SpU+T1pCStWrVSu3btjLIzr68AAADXA3Kx48jFJSMX/4FcXDxy8WXkYgAViTW7AeAa8swzzzhV39/fX1OnTlXr1q1N2zdu3Ggq33vvvU7tt06dOoqKijLW0Pn1118dblt4jbGradeuXaZAFBsbq/r16zvcvk+fPqZ1nLZv3+5w2y5dujhc155bb7211CtyC9SrV09HjhwxyrfffrtD7cLDwxUQEKCsrCxJl28TVVYXL15UZmamsrOzZbt6StWqVY2fDx8+LKvV6vC3F2677TaHgqdUdO29wietCktNTTWdwAgODtZ9993n0DFKc/jwYeM5IUl33nmn02t9dejQQcuWLZN0+cTUrl27TAHPFUJCQjRp0iQ9+eST+uabb7Rq1Srt27fPFMTtOXr0qEaOHKmHH35YEyZMKPY2brbfhnAm0JYkNzdXu3btMsq+vr7q0aOHw+1vv/12hYSEGGPjxIkTSkpKKvaK/sI6derk8G3rtm3bZrp6vVu3bk7f8q5Dhw7G62piYqJOnjxZZD0zAACA6xW52HHk4pKRiy8jF5OLycUA3B2T3QBwnWrTpo0mTpxo9/ZC27ZtM3728/OTv7+/Tpw44dT+q1WrZgSY48ePO9SmZs2axa4F5Gp79uwxlQtfSe2ImJgYBQUFKSMjQ5L0+++/Kz093aFbsDVv3typY9myDaglsb0tmzNtg4ODjVBf8DhLY7FYtHnzZq1atUq7d+9WQkKCLl686HDbjIwMh29j16hRI4fqSeaTB5KUnp5ut15cXJzpxEPr1q1d9o2Kws8r6fJVz84+r2zD37Fjx1we6gtERUVp2LBhGjZsmNLT07Vjxw7t3btX+/bt086dO3X69Gm77ebNm6fAwEC73wjJyMjQgQMHjHJAQIBiY2Nd0t9Dhw6ZwnKjRo1KvC2hLR8fH7Vu3Vpr1641tu3evduhUO/MreZsx0FERITT48D21ojHjx8n1AMAAJQBuZhcXBpyMbmYXEwuBuD+mOwGgGuct7e3AgMDVbVqVdWvX1+tWrVS165di/0QarFYdObMGaOcm5t7xVdcp6amOlQvNDT0io7jDNsrmG1va1YaLy8v1atXz3Ry4Ny5cw4F0is9cWEbUEtie4V3Wdvm5eWVWv/XX3/VxIkTtX//foePYcvREyOSc4/FNgQV93gKr2slSY0bN3b4GKWxDcFz5swxfQuiLNLS0q6ovaOCg4N1xx13mNbPOnr0qFasWKHPPvvMtN6aJP373/9Wz549i5x4OXfunOmkSf369R3+NkZpbL9l4exzuqA/hUN9cd90sOXMa5ftOHjzzTf15ptvOtzenvIaBwAAAJ6KXGwfudi5tuTiK0cuJhdL5GIArsdkNwBcQ+bOnasOHTpc0T7S0tJKvS2TszIzMx2q5+ytq66E7YdgR4NkSW0c/WDtzFW19jh7a6fCHL0VmrNWrlyp5557Trm5uVe0H2fG3pX8Hopz/vx5U9mZEwelcfTkljMcfW5dDXXr1tWIESP0yCOP6MUXX9T3339v/J/FYtGnn36qSZMmmdrY/g5c+fu9cOGCqeyK57SjfzNnXruutXEAAADgbsjFjiMXuxa5uHTXWh4iF/+BXAygIjHZDQAwudJQ5ils18hyRdi9WoHZ3SUmJmr8+PGmsRMaGqqePXuqXbt2io6OVkREhKpUqaJKlSqZfk/jx4/XkiVLKqLbDnHl3/RqPLdsx3FFCAwM1NSpU3Xs2DHt3bvX2L5hw4ZS27ry9+spz+lrdRwAAABcS8jFZUcuJheX5FrNQ+Ri51yr4wBAxWGyGwBgUr16dVO5Xr16WrVqVcV05iqyfZzFrVVVEts2rrwa15PMnj3btP7Y3XffrWnTpikgIKDUto6ueVZeatSoYSq78jZYtvt+9913dd9997ls/xXJ19dXjzzyiMaNG2dsO3nypC5duqTKlSsb267m77datWqmsiue07b7dAXb157PP//c6bURAQAAcHWRix1HLr6MXFy2fZOLycUSuRjAlXP9fU4AAB7N39/f9EE2MTHxmryq3XZ9sN9//92p9larVUePHi1xn9eLn376yfg5ICBAU6dOdSjQSzKtg+cOIiIiTOVDhw65bN+261c5O+bcnb31Dm1De2hoqOmq8CNHjig/P98lx3fF7/fIkSOm8tV4ToeFhZnK19o4AAAAuBaQix1DLv4Dudgx5GJysUQuBuB6THYDAIoofDVlbm6utmzZUoG9uTpatmxpKu/YscOp9gcPHjRd7VqvXr3r8gr2ixcvmoJ5+/btHV57LTs7W/Hx8Vera2Vy4403mtY8i4uLU05Ojkv2bXuV8vr1612yX3fh4+NTZJvtWl+BgYFq2rSpUc7KytKePXtccvxGjRqZrpY/ePCgU9+QyM/P165du0zbYmNjXdK3wq71cQAAAHCtIBeXjlx8GbnYcdd6HiIXO+ZaHwcAyh+T3QCAIm677TZT+csvv6ygnlw9sbGx8vf3N8q7du1y6krSZcuWmcpt27Z1Vdc8yoULF0xl2xBXkm+++cbtvh1RrVo1NW/e3Cinp6drxYoVLtl3ixYtTLcri4uL04EDB1yyb3dge7V/cHCw3W8ydOzY0VT+/PPPXXJ8Pz8/tWrVyijn5eXp+++/d7j9+vXrde7cOaNcu3ZtRUZGuqRvhXXs2NF0AmTNmjWm4wIAAMA9kItLRy6+jFzsOHLxZeRicjEA12KyGwBQRO/evU1XY69cuVKbNm2qwB65XqVKlXTPPfeYtv3zn/90qO3p06e1YMEC07a+ffu6qmsexXbtpsOHDzvULj09XbNmzboaXbpigwYNMpX/+c9/umQNLW9vbw0cONAoW61WTZo0SXl5eVe87yuVkZFR5PaDzrI9+XfLLbfYrTdgwABTqF2+fLni4uKu6NgFevfubSp/+OGHpnXzipOfn6/33nvPtO1qPaerVaumnj17GuWsrCy99dZbV+VYAAAAKDtyccnIxX8gFzuOXHwZuZhcDMC1mOwGABRRtWpVPf7446Zto0eP1q+//urUfvLz87V69Wqlpqa6sHeu8+ijj5rWSfr++++LhHVbWVlZGjNmjLKysoxtLVq00M0333zV+unOKleurHr16hnl+Pj4Um8/dfHiRY0dO1aJiYlXuXdl06tXL0VHRxvlU6dO6amnnnI42FutVp09e9bu/z322GOmq9g3b96sF154QdnZ2U718eTJk1q3bp1TbUqSmpqqe+65R88//7wOHjzodPv3339fGzZsMG2777777NaNjo42hdq8vDyNHj1a+/fvd/h4ycnJdrf36tVL4eHhRvnEiRN66aWXZLFYStzflClTtHfvXqNcuXJlDRgwwOH+OGvkyJGmb9AsW7ZM77zzjtPrtB06dEhbt251dfcAAAAgcnFJyMVm5OKiyMWXkYuLRy4G4EpMdgMA7HriiSdMt227cOGCHnnkEb3++uslXqWcm5ur7du365133tGf//xnjRo1yqn1gcpT8+bNNWTIENO2iRMnatKkSTp//nyR+jt27NDAgQNN65j5+/vrjTfeuOp9dWe23wR4+umntXz58iJBymq1auPGjerfv79+/vlnSVJISEi59dNRvr6+mjZtmipVqmRs27p1q/r27aulS5cWG8BPnz6tuXPnqmfPnlq4cKHdOkFBQZo+fbp8fX2NbcuXL1ffvn21fPnyEsP9mTNntHjxYg0fPlxdunRx6lZkjsjPz9eyZct03333qV+/fpo7d64OHjwoq9VabP1NmzZp8ODBmjFjhun/br75ZnXv3r3YY7344ouqW7euUU5KStKDDz6oGTNmKCUlxW6bjIwMffvtt3r88cf1zDPP2K3j7++viRMnmrYVtElISChS/+TJkxo9erTmzp1r2j5+/HiFhoYW2/8rVadOHf3jH/8wbfv44481cOBArVmzpsRvNZw4cULz58/XI488oh49euiXX365av0EAAC43pGLycWOIhdfRi7+A7m4ZORiAK7kW3oVAMD1yNfXV//85z/1t7/9zQix+fn5WrBggRYsWKDIyEg1btxY1atXl8ViUUZGhk6fPq0jR4643XpTJRk7dqzi4+OND8ZWq1Xz5s3TwoUL1apVK9WsWVPZ2dk6dOhQkdtZeXt769VXX1WzZs0qoutu47HHHtPixYt15swZSZfD19///ne9/fbbatmypYKCgpSWlqZ9+/aZrjzu2bOnfH19tWTJkorqerFiY2P11ltv6fnnn1dOTo4kKTExUePGjdMrr7yiFi1aKDw8XH5+fkpNTdXhw4d18uRJo323bt2K3XfHjh01efJkvfjii8a+ExIS9Pe//10TJkxQs2bNFBERoYCAAGVlZSktLU2HDx8u1/Wr9uzZoz179ki6vMZYw4YNVaNGDQUHBys7O1vJyck6cOCA3RN2jRo10rRp00rcf9WqVTVr1iw9/vjjOn36tKTL3w55//33NXPmTDVp0kQ33HCDAgMDlZGRoePHj+vIkSPGFd4lfWOkU6dOGjFihD744ANj28aNG3XvvfcqJiZG9erVk7e3t06cOKG9e/cWOWlx//33X9Wr1wv06dNHycnJmjZtmnECLC4uTiNGjFCVKlXUrFkzhYWFqVKlSsrMzNT58+eVkJBQZD1AAAAAXD3kYnKxo8jF5OLCyMWOIRcDcBUmuwEAxQoODta8efP07rvvau7cuaZbCSUlJSkpKanUfVSpUsV0WyJ34+/vr9mzZ+vll1/W0qVLje15eXnavn17se2CgoL01ltvqUuXLuXQS/dWtWpVffTRR3riiSdMwTM5OVlr166126Znz56aPHmyXn755fLqptPuuece1axZU2PHjtWpU6eM7dnZ2SWODUf06tVL9evX17PPPms6WZSbm6tdu3Y5tI/C6wdeqSpVqigqKsp0YqJAenq6w2uH9ezZUxMmTHDomwmNGjXSV199pTFjxphuBWmxWLRv3z7t27fP4f7bGjNmjEJDQ/XWW2+ZTjIeOHBABw4csNvG29tbQ4cO1ZgxY8p8XGf97W9/U5MmTTRhwgTTCa+LFy86PMZcOQ4AAABQFLmYXOwIcrHzyMXkYolcDMA1mOwGAJTIz89P48eP16BBg/TJJ5/ohx9+KHbdpQLVq1fXzTffrE6dOqlr164KDAwsp96Wjb+/v9566y399a9/1axZs7Rly5Zir8IPCQlRr169NGzYMLe81VhFad68uZYuXap3331X3333nd3fn5eXl9q2batHHnmkxFt5uZM2bdpo9erV+uKLL/T555/r0KFDxdb18vJS8+bNde+99+r+++8vdd+xsbH6/vvv9d1332nBggXavXt3ibfp8vb2VtOmTfWnP/1JPXr0UPPmzcv0mOwJDQ3V2rVrFR8fr7Vr12rbtm3auXOnQ7darFGjhrp166Z+/fqpVatWTh03PDxc8+fP19q1azVnzhxt3769xN9B7dq11aVLFz3wwAOl7vvhhx/WXXfdpVmzZmn16tXFPpbKlSvrzjvv1KhRo9S4cWOn+u8Kd9xxh3766Sd99dVXWrRokX777bdib5EnXX5NbtmypW677Tbdd999prUBAQAAcHWQi83IxfaRi8nF5OKyIRcDuFJe1pJeNQAAsCMhIUH79+/X+fPnlZ6eLh8fHwUFBemGG25QgwYNVKdOHXl5eVV0N8ssIyND27ZtU1JSks6fPy9/f3/VqFFDDRs2VMuWLT36sZWHCxcuaNu2bTp+/LiysrJUrVo1hYeHq2XLlqpZs2ZFd++KJCUlaefOnTp37pzS0tLk4+OjqlWrKjo6Wk2bNlWNGjXKvO+MjAzt3LlTp0+fVlpamrKzsxUQEKDq1aurXr16atiwoYKCglz4aEpmsViUmJio33//XadOnVJGRoYuXryoKlWqKCgoSGFhYWrSpIlq1arlsmNmZGRo+/btSkpKUmpqqiwWi/HaEhMTo9q1a5dpv7m5udq5c6eOHTum8+fPKz8/XyEhIapVq5batm1rWoeuoqWmpmrnzp06c+aM0tLSlJeXp4CAAIWGhqpevXpq0KCBqlSpUtHdBAAAuO6Riz33sZUHcnHZkIvJxRK5GIDzmOwGAAAAAAAAAAAAAHgc74ruAAAAAAAAAAAAAAAAzmKyGwAAAAAAAAAAAADgcZjsBgAAAAAAAAAAAAB4HCa7AQAAAAAAAAAAAAAeh8luAAAAAAAAAAAAAIDHYbIbAAAAAAAAAAAAAOBxmOwGAAAAAAAAAAAAAHgcJrsBAAAAAAAAAAAAAB6HyW4AAAAAAAAAAAAAgMdhshsAAAAAAAAAAAAA4HGY7AYAAAAAAAAAAAAAeBwmuwEAAAAAAAAAAAAAHofJbgAAAAAAAAAAAACAx2GyGwAAAAAAAAAAAADgcZjsBgAAAAAAAAAAAAB4HCa7AQAAAAAAAAAAAAAeh8luAAAAAAAAAAAAAIDHYbIbAAAAAAAAAAAAAOBxmOwGAAAAAAAAAAAAAHgcJrsBAAAAAAAAAAAAAB6HyW4AAAAAAAAAAAAAgMdhshsAAAAAAAAAAAAA4HGY7AYAAAAAAAAAAAAAeBwmuwEAAAAAAAAAAAAAHofJbgAAAAAAAAAAAACAx2GyGwAAAAAAAAAAAADgcf4fBPsyJVlaqZsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 788, "width": 989 } }, "output_type": "display_data" } ], "source": [ "# Set up 2x2 subplots for the first 4 schools\n", "fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8), sharey=True)\n", "\n", "# Plot performance scores for each school\n", "for school_index, ax in enumerate(axes.flatten()):\n", " school_data = data[data['School ID'] == school_index]\n", " \n", " ax.hist(school_data['score'], bins=20, color='skyblue', edgecolor='black')\n", " ax.set_title(f'School {school_index + 1} Performance Distribution')\n", " ax.set_xlabel('Performance Score')\n", " ax.set_ylabel('Frequency')\n", "\n", "# Adjust layout to prevent overlap\n", "plt.tight_layout()\n", "\n", "plt.show();\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two approaches to estimate performance of students:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unpooled Model\n", "\n", "One way is to treat each school as an entirely independent entity. A separate model is fitted for each school, estimating the average exam scores within that specific school. This approach is known as the \"no-pooling\" or \"unpooling\" approach, as it refrains from sharing information across schools.\n", "\n", "Such a model can be visually represented as:\n", "\n", "![Unpooled model](images/unpooled.png)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": "\n\n\n\n\n\n\n\ncluster50\n\n50\n\n\ncluster2477\n\n2477\n\n\n\nschool_means\n\nschool_means\n~\nNormal\n\n\n\ny\n\ny\n~\nNormal\n\n\n\nschool_means->y\n\n\n\n\n\nsigma_y\n\nsigma_y\n~\nExponential\n\n\n\nsigma_y->y\n\n\n\n\n\n", "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Here is the implementation of unpooled model in pymc\n", "\n", "with pm.Model() as unpooled_model:\n", "\n", " # School specific information\n", " # We'll assume a reasonable mean of 50 as a prior of city-wide average performance of students\n", " school_means = pm.Normal(\"school_means\", mu=50, sigma=10, shape=num_of_schools)\n", "\n", " school_idx = data['School ID'].values\n", "\n", " # Model error\n", " sigma_y = pm.Exponential('sigma_y', 1)\n", "\n", " # Likelihood\n", " y = pm.Normal(\"y\", mu=school_means[school_idx], sigma=sigma_y, observed=data['score'])\n", "\n", "# Plot the graphical structure of the unpooled model\n", "pm.model_to_graphviz(unpooled_model)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [school_means, sigma_y]\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " 100.00% [8000/8000 00:07<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 73 seconds.\n" ] } ], "source": [ "# Using MCMC to estimate the model's parameters\n", "with unpooled_model:\n", " unpooled_trace = pm.sample(random_seed=RANDOM_SEED)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Partial pooled model\n", "\n", "Other approach to tackle the problem is to define a shared global model to capture the overall patterns in the entire dataset. Each school's model is then allowed to deviate from the global model based on its own data. The extent of this deviation is determined by the amount of data available for each school. This approach is known as the \"partial pooling\" approach. \n", "\n", "Such a model can be visually represented as:\n", "\n", "![Partial Pooled model](images/partial_pool.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Equation for estimating group level mean in partially pooled model can be written as:\n", "\n", "$$\n", "\\hat{\\alpha}_{j}^{\\text{partial-pooled}} \\approx \\frac{\\frac{n_j}{\\sigma_y^2} \\bar{y}_j + \\frac{1}{\\sigma_{\\alpha}^2} \\bar{y}_{\\text{all}}}{\\frac{n_j}{\\sigma_y^2} + \\frac{1}{\\sigma_{\\alpha}^2}}\n", "$$\n", "\n", "\n", "- $\\hat{\\alpha}_{j}^{\\text{partial-pooled}}$: The estimated mean for group $j$ in the partial-pooled model.\n", "- $n_j$: The number of observations in group $j$.\n", "- $\\bar{y}_j$: The observed mean for group $j$.\n", "- $\\sigma_y^2$: The variance within groups.\n", "- $\\sigma_{\\alpha}^2$: The variance between groups.\n", "- $\\bar{y}_{\\text{all}}$: The overall observed mean across all groups.\n", "\n", "In our example, a school is a group.\n", "\n", "Through the equation we can observe that estimates for groups with smaller sample sizes will shrink towards the city-wide average, while those for groups with larger sample sizes will be closer to the unpooled school estimates.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is the derivation of the equation: This is the real reason for me writing this blog post, i.e. to share the derivation of group level mean estimates of partially pooled model\n", "\n", "
\n", " Derivation\n", "

\n", " \n", "% Assuming a normal model for the data $y_j$ for group j with a normal prior for the mean $\\alpha_j$.\n", "\n", "% Let $y_j = N(\\alpha_j, \\sigma^2_y)$ and $\\alpha_j = N(\\mu, \\sigma^2_{\\alpha})$\n", "\n", "% The likelihood is given by the normal distribution:\n", "$$\n", "p(y_j | \\alpha_j) = \\frac{1}{\\sqrt{2\\pi\\sigma^2_y}} \\exp\\left(-\\frac{(y_j - \\alpha_j)^2}{2\\sigma^2_y}\\right)\n", "$$\n", "\n", "% The log likelihood is the logarithm of the above:\n", "$$\n", "\\log p(y_j | \\alpha_j) = \\log\\left(\\frac{1}{\\sqrt{2\\pi\\sigma^2_y}}\\right) -\\frac{(y_j - \\alpha_j)^2}{2\\sigma^2_y}\n", "$$\n", "\n", "% Simplifying the constant and assuming a sample size of $n_j$ for group j, i.e. to add log prob terms of all samples as they are i.i.d:\n", "$$\n", "\\log p(y_j | \\alpha_j) = -\\frac{n_j}{2}\\log(2\\pi\\sigma^2_y) -\\frac{1}{2\\sigma^2_y}\\sum_{i=1}^{n_j}(y_{ji} - \\alpha_j)^2\n", "$$\n", "\n", "% For the prior:\n", "$$\n", "p(\\alpha_j) = \\frac{1}{\\sqrt{2\\pi\\sigma^2_\\alpha}} \\exp\\left(-\\frac{(\\alpha_j - \\mu)^2}{2\\sigma^2_\\alpha}\\right)\n", "$$\n", "\n", "% The log prior is the logarithm of the above:\n", "$$\n", "\\log p(\\alpha_j) = \\log\\left(\\frac{1}{\\sqrt{2\\pi\\sigma^2_\\alpha}}\\right) -\\frac{(\\alpha_j - \\mu)^2}{2\\sigma^2_\\alpha}\n", "$$\n", "\n", "% Simplifying the constant:\n", "$$\n", "\\log p(\\alpha_j) = -\\frac{1}{2}\\log(2\\pi\\sigma^2_\\alpha) -\\frac{1}{2\\sigma^2_\\alpha}(\\alpha_j - \\mu)^2\n", "$$\n", "\n", "% Now, combining the log likelihood and the log prior for the log posterior:\n", "$$\n", "\\log p(\\alpha_j | y_j) \\propto -\\frac{n_j}{2}\\log(2\\pi\\sigma^2_y) -\\frac{1}{2\\sigma^2_y}\\sum_{i=1}^{n_j}(y_{ji} - \\alpha_j)^2 -\\frac{1}{2}\\log(2\\pi\\sigma^2_\\alpha) -\\frac{1}{2\\sigma^2_\\alpha}(\\alpha_j - \\mu)^2\n", "$$\n", "\n", "% Taking the derivative of the log posterior with respect to $\\alpha_j$, setting it to zero, and solving for $\\alpha_j$ will yield the MAP estimate.\n", "\n", "% Continuing from the log posterior, we have:\n", "$$\n", "\\log p(\\alpha_j | y_j) \\propto -\\frac{1}{2\\sigma^2_y}\\sum_{i=1}^{n_j}(y_{ji} - \\alpha_j)^2 -\\frac{1}{2\\sigma^2_\\alpha}(\\alpha_j - \\mu)^2\n", "$$\n", "\n", "% The derivative of the log posterior with respect to alpha_j is:\n", "$$\n", "\\frac{d}{d\\alpha_j}\\log p(\\alpha_j | y_j) = \\frac{1}{\\sigma^2_y}\\sum_{i=1}^{n_j}(y_{ji} - \\alpha_j) - \\frac{1}{\\sigma^2_\\alpha}(\\alpha_j - \\mu)\n", "$$\n", "\n", "% Setting the derivative to zero for the MAP estimate:\n", "$$\n", "\\frac{1}{\\sigma^2_y}\\sum_{i=1}^{n_j}(y_{ji} - \\alpha_j) - \\frac{1}{\\sigma^2_\\alpha}(\\alpha_j - \\mu) = 0\n", "$$\n", "\n", "% Solving for alpha_j gives us:\n", "$$\n", "\\frac{1}{\\sigma^2_y}\\sum_{i=1}^{n_j}y_{ji} - \\frac{n_j}{\\sigma^2_y}\\alpha_j - \\frac{1}{\\sigma^2_\\alpha}\\alpha_j + \\frac{\\mu}{\\sigma^2_\\alpha} = 0\n", "$$\n", "\n", "% Collect terms involving alpha_j:\n", "$$\n", "\\left(\\frac{n_j}{\\sigma^2_y} + \\frac{1}{\\sigma^2_\\alpha}\\right)\\alpha_j = \\frac{1}{\\sigma^2_y}\\sum_{i=1}^{n_j}y_{ji} + \\frac{\\mu}{\\sigma^2_\\alpha}\n", "$$\n", "\n", "% Since $\\sum_{i=1}^{n_j}y_{ji}$ is just $n_j$ times the sample mean $\\bar{y}_j$:\n", "$$\n", "\\left(\\frac{n_j}{\\sigma^2_y} + \\frac{1}{\\sigma^2_\\alpha}\\right)\\alpha_j = \\frac{n_j}{\\sigma^2_y}\\bar{y}_j + \\frac{\\mu}{\\sigma^2_\\alpha}\n", "$$\n", "\n", "% Divide through by the coefficient of $\\alpha_j$ to solve for it:\n", "$$\n", "\\alpha_j = \\frac{\\frac{n_j}{\\sigma^2_y}\\bar{y}_j + \\frac{\\mu}{\\sigma^2_\\alpha}}{\\frac{n_j}{\\sigma^2_y} + \\frac{1}{\\sigma^2_\\alpha}}\n", "$$\n", "\n", "% If we let $\\mu = \\bar{y}_{\\text{all}}$, we get the original equation provided:\n", "$$\n", "\\hat{\\alpha}_{j}^{\\text{partial-pooled}} \\approx \\frac{\\frac{n_j}{\\sigma^2_y}\\bar{y}_j + \\frac{1}{\\sigma^2_\\alpha}\\bar{y}_{\\text{all}}}{\\frac{n_j}{\\sigma^2_y} + \\frac{1}{\\sigma^2_\\alpha}}\n", "$$\n", "\n", "

\n", "
\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": "\n\n\n\n\n\n\n\ncluster50\n\n50\n\n\ncluster2477\n\n2477\n\n\n\nglobal_sigma\n\nglobal_sigma\n~\nExponential\n\n\n\nschool_means\n\nschool_means\n~\nNormal\n\n\n\nglobal_sigma->school_means\n\n\n\n\n\nglobal_mean\n\nglobal_mean\n~\nNormal\n\n\n\nglobal_mean->school_means\n\n\n\n\n\nsigma_y\n\nsigma_y\n~\nExponential\n\n\n\ny\n\ny\n~\nNormal\n\n\n\nsigma_y->y\n\n\n\n\n\nschool_means->y\n\n\n\n\n\n", "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Lets code it up in PyMC:\n", "\n", "with pm.Model() as partially_pooled_model:\n", " # Global parameters\n", " global_mean = pm.Normal(\"global_mean\", 50, sigma=10)\n", " global_sigma = pm.Exponential(\"global_sigma\", 1)\n", "\n", " # School specific information\n", " school_means = pm.Normal(\"school_means\", global_mean, global_sigma, shape=num_of_schools)\n", "\n", " school_idx = data['School ID'].values\n", "\n", " # Model error\n", " sigma_y = pm.Exponential(\"sigma_y\", 1)\n", "\n", " # Likelihood\n", " y = pm.Normal(\"y\", school_means[school_idx], sigma_y, observed=data['score'])\n", "\n", "# Plot the graphical structure of the partial pooled model\n", "pm.model_to_graphviz(partially_pooled_model)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [global_mean, global_sigma, school_means, sigma_y]\n" ] }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " 100.00% [8000/8000 00:09<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 75 seconds.\n" ] } ], "source": [ "with partially_pooled_model:\n", " partially_pooled_trace = pm.sample(random_seed=RANDOM_SEED)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparison\n", "\n", "Lets compare the average estimates of student's performance in different schools computed in both approaches:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACXcAAAP/CAYAAACBf20nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3yT5frH8W+aznQCIlspHED2kqUiGwFRhCOCIKCioggewAUI57jleFQQBBRQFAU8ooALUTbI3qgge2+BUtp0JGl+f3CaH0/TkXQlLZ/36+XL3neecTXJk/Jcue77NjmdTqcAAAAAAAAAAAAAAAAAAH4lwNcBAAAAAAAAAAAAAAAAAADcUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADAD1HcBQAAAAAAAAAAAAAAAAB+iOIuAAAAAAAAAAAAAAAAAPBDFHcBAAAAAAAAAAAAAAAAgB+iuAsAAAAAAAAAAAAAAAAA/BDFXQAAAAAAAAAAAAAAAADghyjuAgAAAAAAAAAAAAAAAAA/RHEXAAAAAAAAAAAAAAAAAPghirsAAAAAAAAAAAAAAAAAwA9R3AUAAAAAAAAAAAAAAAAAfojiLgAAAAAAAAAAAAAAAADwQxR3AQAAFKCRI0eqRo0arv/mz5+f7fbz5883bD9y5MhCihTXg7Zt2xreXydOnPB1SAAAAAAAH9i4caPh/rBfv36+DsmA+9eiwdvXyds8GeCpEydOGN5bbdu29XVIAADkq0BfBwAAgK+MHDlSCxYscOsfPHiw/vGPf3h9vMWLFxv2q1ChgpYvX56nGP1FjRo1PNouLCxMkZGRKlWqlOrUqaOGDRvqrrvuUkRERAFHCLibP3++Ro0ala/HXLZsmSpWrJivxwQAAAAAZC6r3E1GgYGBioyMVHR0tKpWrar69eurXbt2+tvf/lYIUaIo27hxo/r375/jdiaTSeHh4YqKilLZsmVVv359NW3aVK1atZLZbC6ESAEjTz8fPVWcctkAABRHFHcBAJDBp59+qn79+qlkyZK+DqXISUpKUlJSks6dO6c9e/Zo3rx5euONN9SrVy/94x//UGhoqK9DBIqkEydOGBJ2FSpUUI8ePXwY0fUtPj5en332masdGRmphx9+2HcBAQAAANc5u92uS5cu6dKlSzpy5IiWLVum9957Ty1atNDo0aNVvXp1X4eYr5YuXao9e/a42u3bt1fNmjV9GFHx53Q6lZCQoISEBJ06dUrbtm3TzJkzVb58eT355JPq1auXr0MEiqyNGzdq06ZNrnbTpk3VrFkzH0Z0fduzZ4+WLl3qatesWVPt27f3YUQAAIniLgAA3FitVn300Uf5PuPP9SoxMVGffPKJVq1apY8++kiVKlXydUhAkXPy5El98MEHrnbTpk0p7vKh+Ph4w+tRoUIFirsAAAAAP7R+/Xrdf//9evnll4vVPdTSpUvdBgBR3OUbp06d0j//+U+tWrVKEyZMUHBwsK9DAoqcTZs2GfIsQ4YMobjLh/bs2WN4Pbp3705xFwD4AYq7AADIxNy5c/Xoo4+qTJkyvg7FL913331q0KCBW7/VatXp06e1bt06HTx40PDYwYMH9cQTT+jLL79UdHR0IUUKGL388st52j8mJiZf4gAAAAAAeK9y5cqZDqyw2+26ePGidu3apQ0bNshut7seS0lJ0ZgxY1SiRAm1adOmEKNFUTVs2DC3+3+n06krV67o8OHDWrNmjf766y/D48uWLdPIkSP17rvvymQyFWK0wFVZfT56Kjw8PP+CAQAA+Y7iLgAAMpGSkqLJkyfr1Vdf9XUofqlZs2Y5jnhdunSpXnrpJcXFxbn6Dh06pAkTJuhf//pXAUdYdPXo0aNYjSb2Nw8++KCvQ/Cp5cuX+zoEAAAAAMi1G2+8Mcf7uuPHj2vMmDHasGGDq8/hcOill17S0qVLZbFYCjrMIqFZs2bau3evr8PwS/fcc48qVqyY5eOpqamaOXOm3n//fTkcDlf/jz/+qA4dOqhz586FEWaRNG7cOI0bN87XYRRLnnw+FmcVK1bkMw0AUKwF+DoAAAD8RenSpQ3tb775RseOHfNRNEVf+/btNWvWLIWFhRn6582bp7Nnz/ooKgAAAAAAUJxVqlRJH3/8sZo2bWrov3Dhgr788ksfRYXiJDg4WIMGDdIrr7zi9tiUKVN8EBEAAACKO4q7AAD4n7Zt26p69equtt1u1/vvv+/DiIq+GjVq6LHHHjP02Ww2rV692kcRAQAAAACA4i4wMFBvvvmmzGazoX/JkiU+igjFUc+ePdWsWTND3759+3T06FEfRQQAAIDiiuIuAACuMWzYMEN70aJF2rdvn2+CKSZ69uzp1rdx40YfRAIAAAAAAK4XlSpVUosWLQx9v/32m5KTk30UEYqjBx54wK1v06ZNPogEAAAAxVmgrwMAAMCftGvXTvXr19fOnTslSWlpaZowYUKhT6memJio7du36+zZs7p48aLMZrNKliypChUqqH79+goODi7UePKiTJkyqlChgk6ePOnqO336tMf7HzhwQPv27dOlS5d05coVRUdHq2TJkqpbt67Kly+fr7GeO3dOu3bt0oULFxQXFyeLxaKSJUuqSpUquuWWW2QymfL1fIUlKSlJ27Zt0+HDh3XlyhVFRESodOnSuvXWW3XDDTfkyzkuXbqkrVu36uzZs4qPj1dERIRuvvlmNWrUSBEREflyjqImPj5ee/bs0dGjR3XlyhWlpKQoNDRUERERKleunG6++WbddNNNvg4zT5xOp/bs2aM9e/bowoULkqQbb7xRDRo0UOXKlXPc3263a+fOndq/f7/i4uIUFhamMmXKqFmzZipRokSe4zt9+rQOHDigkydP6sqVK0pLS1N0dLRKlChRIJ8h+engwYPav3+/Ll68qPj4eEVGRqpUqVKqV69evsSdmJiovXv36tChQ7py5YqSkpIUEhIii8WicuXKqVKlSoqNjVVAAOOBAAAAUHQ1aNBAv/76q6tts9l0/vx5VapUKct94uLidODAAR09elTx8fFKTk5WZGSkoqOjVb16dVWvXr3A8gMpKSnauXOnDh06pMuXL0uSSpUqpW7duikoKKhAzpkXCQkJOnjwoA4fPqy4uDglJSUpPDxc0dHRio2NVa1atRQYWLy/hmrQoIFb36lTpzza1263a9euXTpx4oQuXryo1NRUlShRQjfeeKMaNmyoqKiofI21MHNshemvv/7S9u3bdeLECaWkpCg6OloVKlTQrbfeKovFki/nOHr0qP744w+dO3dOKSkpiomJUbVq1VSvXr1i/x7PypkzZ/Tnn3/q1KlTSkhIkMPhUFhYmOv5r1KlSr7lHX0lNTVVO3bs0IEDBxQfH6+goCBVrFhRTZo0UcmSJXPcPyEhQdu2bdORI0eUmJioqKgo3XTTTWrWrFme8/sOh0NHjhzRoUOHdO7cOV25ckWBgYGKjo5WmTJlVL9+fUVHR+fpHAXF4XDot99+04kTJ3ThwgUlJye7PvsaNWqUL599Fy5c0J9//qnjx4/rypUrstlsCgsLU2RkpCpUqKDKlSurXLly+fDbAEDhuT7/xQEAQDaGDx+uhx9+2NVetmyZdu3apXr16hX4udevX69p06Zp8+bNstlsmW5jsVjUsmVLPf3006pRo0aBx5QfbrjhBkNx16VLl7LdPj4+XjNmzND333+fbULsb3/7m3r27Kk+ffrk+obY4XDom2++0Zw5c7Rnz54stytdurQ6d+6sp556yqOb99yaP3++Ro0a5Wp3795d48aNy3L7jRs3qn///q5206ZN9fnnn0u6mtyaNGmSFi5cmOnIZJPJpKZNm+q5557L9ft7z549euedd7RhwwbZ7Xa3x4ODg9WlSxcNGzbMdcPctm1bw/th2bJlqlixYq7O74+WL1+uzz//XBs2bFBaWlq228bExOjWW2/VXXfdpa5duxoKaTK+ttfatGlTttd/hQoVtHz5crd+b5/7fv36GUYcz5o1S82aNVNaWpq+/PJLzZgxw3C8azVp0kSjR49WrVq13B5LTEzUjBkzNGfOHMXFxbk9bjab1blzZ73wwgsqU6ZMlvFllJSUpBUrVmj58uXauHGjzp07l+32FSpUUO/evfXggw8qMjIy221PnDihdu3aZfrYyZMnc/w83rt3b/bB6+o1O336dP3yyy85fvb1799f999/v9syMznZsmWLPvnkE61evTrLvzPpwsPD1bBhQ3Xs2FHdunVTaGioV+cCAAAAfC2zwoJLly4ZirvS0tK0adMmLVmyRBs2bNCBAweyPWZUVJTuvvtuDRw4MNsisYwy3lNce992+vRpffDBB/rxxx+VlJTktm/Hjh01duxYLViwINNjjxo1ypBLyGjIkCEaOnSooS+7fEJ2du3apcWLF2vDhg3as2dPtve9FotFbdu21RNPPFFkcljeKl26tFtfTnmvI0eOaPLkyVq5cqXi4+Mz3cZsNqthw4Z69NFHs7wX9URh5tg8MXLkSMP7+K233lKPHj2y3H7SpEn64IMPXO1r38t//PGH3n//fa1ZsybT92FwcLC6du2qYcOGeZVbuNbixYs1depU/fnnn5k+HhMTo759++rxxx9XWFhYttd5cWCz2TR37lzNmzfPo9UuKlSooNtuu0333nuvmjZtangs42t7rQ8++CDLx6TM86W5ee4zfi6l524SEhI0efJkffXVV0pISHDbLygoSF27dtXzzz+vUqVKuT1+4sQJTZw4UT/99JNSU1PdHrdYLHr00Uf1xBNPKCQkJNsYr3X+/Hn9/PPPWr16tbZu3ZppbOlMJpNq166thx9+WF26dMkxf5QxJ32tBQsWZPn3R/L878eff/6pjz76SGvWrNGVK1cy3cZsNqtx48YaPHiw2+ybOXE6nfr22281d+5c7dixI8ftS5curWbNmqlLly55+pwFgMJCcRcAABm0aNFCzZs314YNG1x948eP18yZMwvsnFeuXNHzzz+vFStW5Lit1WrVzz//rCVLlujBBx/U6NGj/X6EWMYES3YjXH/66Se9/PLLmRZ8ZHTgwAG99dZbmjVrlsaPH6/69et7Fdf+/fv1zDPP6NChQzlue/78ec2aNUvffPONRo0alelyk/5k/fr1GjZsWLbPo9Pp1MaNG9W7d2+9/vrr2SbTMjN58mRNnjxZDocjy21SU1O1cOFCLVmyRBMmTNCdd97p1TmKkqSkJD333HNaunSpx/vExcVp6dKlWrp0qVq3bp3vo3ILwpUrVzR06FCtX78+2+02b96sXr166d1331XHjh1d/QcOHNDgwYN19OjRLPd1OBz64YcftHHjRn322WeqWrVqjnFdunRJbdq0yfSLkKycPHlS7777rj777DNNnDhRjRs39njf/DZjxgxNnjxZVqs1x20PHDigf/7zn/r88881depUj75QcjgcevXVV/Xll196HFNiYqJ+/fVX/frrr6pXr55q1qzp8b4AAACAP8hpwI0k9e7d2zWDuyfi4+M1d+5cff311xo9erT69OmTlxC1bNkyPffccx7dC/ja8OHDtWjRIo+3t1qt+uGHH/Tjjz/qySef1D/+8Y8iOyt6VjJ7j2X1OzqdTo0fP14ff/xxpgPkruVwOLRlyxZt2bJFTZs21YQJEzItIslOYebYCtvHH3+sd999N8ec1Pz587VixQp9/PHHql27tsfHT05O1ogRI7Rs2bJst4uLi9PkyZO1aNEiTZ8+vdi9v6917NgxPfnkkzp48KDH+5w8eVLz5s3Tb7/9pm+//bYAo8s/+/fv16BBg7IczChdLXJbsGCB1q9fr5kzZ6pKlSqux3755ReNHDlSiYmJWe5vtVr1wQcfaP369Zo+fbrCw8NzjGvlypV66qmnPPq7Jl39vPn999/13HPP6fPPP9ekSZNyXeSYV0lJSXrllVe0cOFCOZ3ObLd1OBzatGmTNm3apLvuukv//ve/FRYWluM5Ll68qMGDB2v79u0ex3X+/Hn98MMPWrVqlbZs2eLxfgDgK6yxAQBAJkaMGGFor1u3zlDslZ/OnTunPn36ZFnYZbFYMp0tJS0tTbNnz9bgwYMznZXJn6Qv15YuJiYm0+1mzZql4cOHZzmTT3R0dKZJkpMnT2rAgAFatWqVxzFt2bJFffr0ybKwKyoqKtOiucTERI0ZM0aTJk3y+FyFbf369XriiScMz6PJZFJ0dHSmoy8dDodGjx6dY7HOtd577z1NnDgx0yRaUFCQW5FSYmKinn76aW3dutXzX6SIGTJkSJaFXSEhISpRooTCw8OLdKIvNTVVgwYNcnuvhIeHZ5poSU1N1XPPPeeaFe/o0aPq16+fobDLZDIpKioq0yVGzp8/r8cff9yjgi273Z7ldkFBQYqJiclyOYa//vpLAwYM0MaNG3M8T36z2WwaNWqU/vOf/2T6ZU567Jk9P/v371evXr2yHEF8rVdeeSXLwq70c0RERLAMIwAAAIqVjPkISW5LwGc1c1JAQIAiIyMVFRWV6b+TbTabXnnlFX344Ye5jm/t2rV65pln3O4FIiMjC3T2pNzK6rkymUyKiIhQdHR0prPDOJ1OTZ06Vf/85z8LOsRC99dff7n1ZZb3stvtevbZZ/XRRx9lOfN5REREpufYtGmTevXqpWPHjnkcV2Hm2ArblClT9PbbbxtyUoGBgYqJicn0/Xfp0iUNHDhQFy9e9Oj4ycnJGjRoUJaFXWFhYW75hcOHD+vhhx/Ocda2ourSpUvq27dvloVdFotFJUqUKPIzfh8/flwDBgwwFHal51Qzy8ucOXNGgwYNcn2G//LLLxo2bJihsCv9esvs78jWrVs1evRoj2JLTEzMsrArJCREMTExWc4CtnPnTj3wwAOZ/k0saOfPn1ffvn21YMGCTAu7QkJCsnx+fv75Z/Xv3z/bGcqkq/nHAQMGZFnYFRYWphIlSuTbMq0A4Cv+Pc0HAAA+Ur9+fbVp08ZQcDVhwgSvZjzxhMPh0LBhw9ymsa5ataoGDRqk1q1bKzo6WpJ09uxZLVmyRFOnTjUkjlatWqU33nhDr732Wr7Gll/Onj3rNu17ZuvZr1mzRm+++abhJs9sNuvBBx9Ujx49dMstt8hsNstms2nbtm2aM2eOFi9e7No2KSlJw4YN04IFC1S5cuUcY3r66afdkpKtWrXSQw89pObNmys4OFhpaWk6ePCgFi5cqM8++8ywhNkHH3yg2NhYde3a1Zuno8CdP39ew4YNU2pqqoKCgvT3v/9d3bp1U926dV1JiAMHDujLL7/U7NmzXUkBp9OpsWPH6ueff85xmu6lS5fqo48+MvRZLBYNHDhQd999typXriyTyaTU1FRt2rRJs2fP1vLly5Wamqrnn3/e74sRc+OHH37Qr7/+auhr2rSp+vbtq1tvvdWwFIjD4dCxY8e0d+9e/frrr1qxYkWmyeDKlSvr5ZdflnR1yYZPP/3U8Ni1y8dm5MmIv9yYOHGidu3aJUmqW7euHn/8cd1+++2uBPTJkyf11VdfacaMGa5kdUpKil577TV9+umnGjJkiC5evCiTyaQuXbqoV69eatiwoetLi927d+vDDz/Uzz//7DrnyZMn9eGHH2r48OEexRgUFKSmTZvqzjvvVJ06dVS9enVDsaHVatXu3bv1008/ad68eUpJSZF09YuZZ599Vt9//73blz3S1eR8+usRFxenCRMmGB4bNmyYZ09iBm+++abmz59v6KtRo4YeeughtWjRwjAr18GDB/XTTz/p008/dU1ff+HCBT3zzDOaP39+ll8EbN++Xf/9738NfbVq1dKAAQPUrFkzlS1b1pXUdzqdOnnypPbt26d169Zp+fLl2Y5WBQAAAPxZxmWZgoKCMl1GT5Jq166t1q1bq2HDhqpevbpuvPFG17+T7Xa7Dhw4oBUrVmj27Nk6f/68a7+JEyfq1ltv1a233upVbImJiXrhhRdc90533XWXevXqpVtvvVUhISFyOp06d+6cfvrpJwUFBem+++5zzaa0cOFCw+923333qUGDBlmeq06dOl7FlpOqVauqVatWatq0qapVq6YKFSq4nqu0tDQdPnxYa9eu1ezZs3XkyBHXfl999ZWaNm2qe+65J1/j8aXMlv4qX768W9/EiRP1448/Gvqio6P1xBNPqFOnTqpYsaKkq8vBrV69WjNmzNAff/zh2vb48eN6+umn9c033+RY+FeYObbCtnbtWtdzHhMTo0ceeUQdOnRQlSpVZDKZ5HA4tH37dk2dOtWQp7l06ZL+/e9/69///neO53jnnXfcBvlWqFBBTz31lNq2beuaQe3y5ctavXq1pk2bpn379unEiRN+m5/Nq/Hjx+vcuXOudkBAgO677z5169ZNderUMeQjUlJSdPDgQf3xxx9avXq11qxZk+kxW7du7cqXrVy5UitXrjQ81rp16yzjiY2NzdsvlIURI0a4CqC6dOmi3r17q1GjRgoKCpLT6XTlrX755RfXPseOHdO0adPUrVs3vfjii3I4HAoLC1O/fv3UtWtXVa9eXSaTSTabTevXr9e7775rGKS3ePFirV27VrfffrtHMUZFRally5a64447VLNmTVWpUsVQ1HXx4kVt375d33zzjaFA8cyZM3rhhRf08ccfZ3rcBg0auPJeO3bs0MKFCw2P3XfffVnGdOONN2banz5I9NrPMunq63v//fercePGKlmypKSrf2d37dqlefPm6dtvv3UVb+7atUtjx47V+PHjszz/zJkz3b5f6dChg3r27Kn69esbCm5tNpuOHDmiPXv2aPXq1Vq1alWOs4kBgL+guAsAgCwMHz5cK1eudP3jfvv27Vq+fLnatm2bb+f4+OOP3WYy6tatm15//XW3RE2ZMmX00EMP6Z577tGgQYMMI1G++uortWnTJl9jyy/z5s1z62vWrJmhHR8fr1GjRhlupCIjIzVjxgy35GRQUJCaNWumZs2a6bvvvtPIkSNdN3tWq1XPPvusvv7662xnRxo9erTbrFZjx45V3759DdsFBASoWrVqev7553XPPffo0UcfNYxw+te//qUmTZr4bErrzBw+fFiSdMMNN2jq1KmqV6+e2zZ/+9vfNGbMGNWqVUujRo1y9R8/flwrV65Uu3btsjx+QkKC60Y/XYUKFfTZZ5+5LQ0XHBysO+64Q3fccYe+/PJLvfzyy8W2SOTahIck9evXT2PGjMl0W7PZrNjYWMXGxqpTp06y2Wz65ZdfMr3mH3zwQUnSxo0bDcVdN954o+uxwpRe2PXoo4/qhRdecLvOKlSooOHDh6tKlSp64YUXXP1bt27ViBEjtG/fPoWEhOjdd99Vhw4d3I5fq1YtTZw4UWPGjDF8dnz11VcaMmRIpqMk0wUHB2vo0KF68MEHs12qwmKxuL546devnx5//HHX6Ofz589r9uzZGjJkiNt+ERERruf8xIkThuKu8PDwXL0eixcv1pw5c1xtk8mkf/zjHxo0aFCmIxarVq2qIUOGqFu3bnriiSdcMw8ePXpU7733Xpaj4DO+Pzt06KAJEyZkOjuhyWRSxYoVVbFiRbVt21YvvfSSVq9e7fXyHwAAAICvHT9+3K1Ao27dum4zy9x3331q166dqlWrluWxAgMDdcstt+iWW25Rv3799Nxzz7kGBDocDr3//vv6/PPPvYovPS8RFBSkd999V3fddZfhcZPJpDJlyrgG9jRv3lzNmzeXdHUWlmuLipo1a6YePXp4df7caN26tYYMGaKGDRtmuU1AQICqVq2qqlWrqnfv3nrttdf01VdfuR6fOHGi7r777mIza/C1v1u6pk2bGtrbtm3T9OnTDX01atTQJ598YhgMJl299+zSpYvuuusuvfHGG5o9e7brsX379um9997TyJEjs4ynsHNshS09H9qgQQNNnTrVVRiSzmw269Zbb9WMGTM0evRow2CqH3/8US+++KLbPtfasWOH4TmXpJYtW2rSpEluM5ZHR0frnnvuUadOnTRmzBgtXLjQqyVei4rU1FS3wsQJEya4fWalCwkJUa1atVSrVi317NlTly9fznS1gLp166pu3bqSrs6Ad21xV506dXyW9woODtY777yT6Wdy7dq1NWnSJLe81dy5c7VlyxZZrVZVqFBB06dPV9WqVQ37BwUF6c4771Tjxo3Vt29f1yz3kjR79uwci7vKli2rN954Q/fcc0+WM3RJUsmSJdWuXTu1a9dOK1eu1LBhw1wz3f/666/atGmT22eUJFWpUsW1vGRISIghlxQbG5ur12PcuHGGwq7IyEj95z//UZs2bdy2DQwMVKNGjdSoUSN17dpVQ4cOdc2AtmjRIt11113q1KlTpufJmPd68cUX9eijj2a6bVBQkKpVq6Zq1arp3nvvVVJSkpYsWeL17wYAvlA8/vUMAEABqFGjhu6++25D3/vvv59vIzmSk5PdRso0b95cb731VrYj8KKjozV9+nRVqFDB0D9lypR8iSs/7d27VzNmzDD0pd/IXuu///2vYdSryWTSBx98kO2oU0m699579eKLLxr6fv/992ynjt+1a5fbDEtPP/20W2FXRrfccoumTZtmKIZISEgwFNz4i6CgIE2ZMiXTwq5r9ejRw20U3LUjNTMzf/58w2sVHBys6dOnuxV2ZdS7d28NGjQo+8ALQY0aNXL9X3av9e7du10/BwUFeTWLU1BQkO6+++4iM3V9ly5d9OKLL2ab3O3WrZtbEWd6omTMmDGZFnZda+TIkYqMjHS1L168qM2bN2e7T3R0tIYMGeJVEVLlypX10UcfGT5z586dm+U09/nJ4XDo7bffNvSNGDFCTz31VI5fclSqVEnTpk0zPEdff/11lktMXPv+TD9PZoVdmTGZTGrVqlWWozABAAAAf2S32/XSSy8Zlm2TpPbt27tt++STT2Zb2JVRRESEJk6caJg5ZtOmTTpw4ECuYn3ppZeyLJLwN/369cu2sCuj4OBgvfrqq4ZCgmPHjmU5k09R8/XXX2vTpk2GvmrVqunmm2829E2dOtVwn1mqVCnNnDnTrbDrWmazWWPHjnW7f54zZ062ywsWZo7NVypUqKBp06ZlW6RlMpk0ZswYw3Nss9myXGox3YwZMwyvVWxsrCZPnuxW2HWtoKAgvfnmm2rSpIkXv0X+27RpU57yXtcWG13r+PHjhmXxGjRo4NVnVnR0dJZFOf5o9OjROf5+I0eONMwSHxcXp82bNys4OFhTp051K+y6Vnh4uNtSjKtXr85xpYPGjRvr/vvvz7awK6PWrVu7DQTMWLxYUI4cOaK5c+e62oGBgfrwww8zLezK6Pbbb9e4ceMMfdOmTct025SUFNfgR+nqgNjsVjvIKCwsTPfee6/H2wOAL1HcBQBANoYOHWr4AvzPP//UokWL8uXY33//vWH2qMDAQL3yyis5LoknXR3lkvEm8LfffstyXXlfWLp0qfr37+8aGZTu/vvvN8x0lZaWZpi5Rro6ajZ9NGpO+vXrp9q1axv6shstm/GxypUre1x0VKdOHbcisK+//trtd/S1+++/37VUQ0569eplaP/+++/Zbp9xRGr//v2zTVhca/DgwSpbtqxH2xY11y7xGRMTk+XyeEVdUFCQ22dPVjJLjNSsWVMPPPBAjvtGRES4zUSY03szt6pUqWKYre6vv/7K9Zcy3vjpp58MM9nVrl1bjz32mMf7V6pUSQMGDHC1U1JS9O2332a6bcYlaNOX+wAAAACKoxMnTuixxx7Txo0bDf0lS5bMt5lggoOD1b9/f0NfxlnCPFGzZk317t07X2LyVyaTye1eJzfPlT9JTU3VtGnTMp09efDgwYb20aNH3YrZnnvuOY8GJqXPNH9tYVFKSkqms+RLhZ9j85XnnntO0dHROW4XHh7utgRodrmFc+fOuWbkSzdq1CiPimnSi/GKo8uXLxvaxTmnUKNGDY/+TkRERGRapPTggw+qRo0aOe7ftGlTw/KtNptNe/fu9S5YD913332G5Ygz/m0sKJ988omhULJPnz5eLV/csWNHQ2HwH3/84ba8oyTD9yvS1eLP4jIzJABkxLKMAABko3LlyurevbshaTJx4kTdddddHs96kpXVq1cb2i1btlTlypU93r9du3aqWLGiTpw44epbtWqVVyMoc2vjxo1KSUlx609KStKpU6e0bt06HTx40O3xypUru81otH//fp06dcrQ99BDD3kcS0BAgB566CHD8oIbN25UcnJypjMhZXzee/Xqle1MaRn169dPs2bNcs3gFh8frx07dqhFixYeH6OgeZMYbtSokaF95MgRpaWlZXoTfPbsWe3fv9/Ql7E4LDshISG677779OGHH3q8T1ERGRnpGjl74cIFnTlzplgWsrVp08aQEMpO+tT61+rZs6fH56pbt66hWOnaUXj5rUGDBvrpp59c7Z07d6p69eoFdj5J+uGHHwztPn36eJ186tKliz744ANXe9OmTXrkkUfctrt2hi/pajI747UPAAAAFAXnzp0zzASSzm6369KlS9q5c6c2btwom81meDwgIECvvfaaLBZLvsWScSaknTt3epXPkK4OzvKnJe8KSmbPlT/7/vvvFRMTY+hzOp1KSEjQ4cOHtWbNGsPsWOnuuusude7c2dC3evVqwyoAMTEx6tq1q8exlClTRp06ddKCBQtcfatWrcp0oGJh59h8ISYmxqtZoxo1aqSZM2e62tnlFjZs2CC73e5qly9f3m31gezUqFFDDRs29KvBt/nh2hmqpKuzg2eVOyzq8pK38nb/OnXqGK7XgwcPejxY1xsBAQGqW7euli9fLkm6dOmSjh07pptuuinfz5UuLS3NbYB8v379vD5Oly5dDLMjbt682a0ANWPO69ChQ7Jarfn69x4A/AXFXQAA5GDIkCH69ttvlZqaKulq8cuCBQu8ulnLTMYb/ZyWKcvIZDKpY8eO+uSTT7I8ZkFZuHCh21r2OalcubKmTZvmlhzLGHP58uVVp04dr47dsWNHjR492pUss9ls+v33391GAx06dMhtNI+3z3ulSpVUq1Ytw0ihbdu2+U1xV1RUlEcjxNLFxMQoMjJSV65ckXT15jsxMdHtxliSduzYYWhXrlzZ60RAy5YtfVrc9fLLL+d63+yKYerVq6eVK1dKuvocPvPMM3r33XdzXK6yqPFmhN21IxDTNW7c2OP9y5UrZ2hnnH3KU+fOndPBgwcVHx+vxMREpaamui2vm3HpgdOnT+fqXJ5KS0vT1q1bDX0tW7b0+jhVq1ZVaGioa+r+jNdounr16um3335ztUeNGqX3339ft9xyi9fnBAAAAHzpyJEjXt/XBQcH65///GemSzJm5cqVK9q/f78uXryohIQEJScnu91HZMwv5OY+IuNy9kVRUlKS9u/fr/PnzysxMVFJSUk5LnVf0PdceTVhwgSv92ndurXefvttt2K9jHmv1q1bezXIULpaNHZtcdfvv/+u1NRUt+MUZo7NVxo3buzRqgfpMuZl0vNfmclYdHjHHXd4XXx55513+qy4q3Llyl4tR5dRVoMUY2NjDbnDQ4cOaezYsRo1alSxm7nem6U1M+atYmJi9Le//S3X++cm75WWlqbjx4/r6NGjSkhIUGJioqFAMV3GpVxPnTpVoMVde/bsMVxrN998c67Ol7GQa/v27W7vcYvFomrVqrkGJF++fFkjRozQG2+84dEMiQBQlFDcBQBADsqWLasHH3xQn332matv8uTJ6tatm9fJmHQXL150G+HnbbIls30KavrmvLBYLOrZs6eGDRuW6YiZjDHn5nmIiIhQ5cqVdfjwYcNxMyaeMp4rJiYmV8U3derUMRR3+dPzXr58ea8TT+Hh4YYb7oSEhEyLuzKObsxNYUjNmjVlMpnckuKFJb+W4Miod+/eruIu6WpCsFOnTrrzzjvVvn17NW/eXBUqVCiQcxcmb36HzK53b/YPDw83tBMTEz3ed9OmTVq4cKGWL1+uS5cuebxfutwWknnq8OHDhnMEBga6RlB6KygoyFXcdfHiRdntdreZJR944AHNmTPHdd0dOXJE9913n5o1a6aOHTuqRYsWqlKlSi5/GwAAAMB/NW3aVC+99JJH96+HDx/W/Pnz9fPPP+vo0aNen8vb+4igoKAi++/ws2fP6ptvvtFPP/2kAwcO5FjMlVFB33MVpjJlyujJJ59Unz59Mn08P/JeGfdJSUnR0aNHVa1atXw/l6c5Nl/xNreSMbeQkJCQ5bb5kfeqVauW1/vklxtvvLFA8l5ms1k9e/Y0DDD++uuvtXjxYnXq1Elt2rRRkyZNPFoq099lNlAxKxnfW+XKlfMqJ5sxb+Zp3stut+unn37Sjz/+qA0bNigpKcnjc6bLrsgxP2QslAwKCsp01s2cXLhwwdDObMZE6Wpe9rXXXnO1V6xYoTZt2qhDhw5q27atmjVrphtuuMHr8wOAv6G4CwAADzz55JOaN2+erFarpKsjDOfOnasBAwbk6ngZR3dK3icnJKlixYqGdnx8vJxOp8+m9A8JCVFUVJRKlSql2rVrq2HDhurcuXO2o7guX75saOe2AKZixYqGxFNmz3F+niu74/pSZkVZOck44tHhcGS6Xcbkq6fL810rPDxcYWFhrmupuGjTpo169eql//73v64+u92u5cuXu4p2ypYtqwYNGqhp06Zq3ry5qlat6qtwc82bEZmZjaT1Zv+M0/t78mXB2bNn9c9//tNQaJcb3hSS5UbGZJTdbs/TrHLXio+PV8mSJQ19t9xyi4YPH6733nvP1ed0OrVhwwZt2LBBklSyZEk1aNBATZo0UfPmzX2akAYAAAC8FRgYqIiICEVFRalq1aqqX7++2rdv71b8kpnU1FS9++67+uKLLzKd8cRT3t5HhIeHezUDkT9wOp2aNm2apk6dmquCgnQFfc9VUCwWi6KiolSuXDnVq1dPTZs2VevWrd0G2FwrP3JRpUuXVkhIiFJSUrI8bn6dS/Isx+Yr3ua9vMktZHz+brzxRq/OJanYFpAMHTpUGzduNAx2TUhI0Ndff62vv/5aJpNJVatWVcOGDdW0aVPddtttRfK58Ob9lfG95e0sZhk//z3Je23btk1jx47VgQMHvDpXRgX9GfzXX38Z2gcOHMiXvFdWOfgHH3xQq1at0urVq119KSkp+uGHH/TDDz9Ikm666SY1bNhQTZo00W233VYsBuECuP5Q3AUAgAdKliyp/v37G5aT++ijj9SzZ89crd+esUgmICDAbbSPJzLeNDocjixnXcpPb731lnr06JEvx8p4U5bb6bwz/s6Z3exlfN5z85x7ei5fKcjCvoyjunL7/EVERBS74i5JeuWVV1SlShVNmjQp05GgZ86c0eLFi7V48WJJUvXq1dW7d2/17Nkz17MAFra8vr8K8v156tQp9evXTydOnMjzsQp6ZrmC/MzI6guWQYMGqVy5cvr3v//tlmSTrs76dW0x4k033aS///3veuihh4rdMgsAAAAoupo2barPP/88346Xmpqqp59+2vCFcG55ex+R23tqXxozZoy+/vrrPB/HV7N5e2rZsmVuA/tyKz/zXtcWd3kyqLEgc2y+UpB5hYy5nPzI1RYXFotFn3/+ucaNG6dvvvnGbWCo0+nUgQMHdODAAc2bN09ms1nNmjVT//791aZNGx9F7b28vL8KerD12rVrNXjwYNfs7Xnh7WyL3iqoz4yscl5ms1lTpkzRpEmT9Omnnxo+K9MdO3ZMx44d07fffitJatCggfr06aOuXbsWuUJrANcvirsAAPDQY489prlz57puTi5cuKBZs2bpySef9HFkRr6atcvfePI85Ndzdb085xkLkGw2W66Ok9v9/J3JZNLDDz+s7t276/vvv9fixYu1c+dOpaamZrr9vn379Oqrr2rmzJl67733VK9evUKOuHgZNWqUW2FXbGysOnfurPr166tChQoqXbq0QkNDFRwcbBhhOX/+fI0aNarQYi3IayC7L0nuvfdedejQQYsWLdKiRYu0bdu2LAstjx07pvHjx+uzzz7TuHHj1KpVq4IKGQAAAPCZadOmuRV2lShRQnfffbcaN26sm2++WWXKlJHFYlFISIjhC+ATJ06oXbt2hR2yzyxcuNCtsMtisahz585q2rSpqlSpojJlyigiIkIhISFus1nVqFGjMMP1W0UxF0Xey3PFNeclXS12e+211/TYY49p/vz5Wr58ufbv359pHsLhcGjdunVat26dbrvtNr399tu5WgEAV8XFxenZZ591K+xq1qyZWrVqpdq1a6tcuXIqWbKkQkJC3N7LI0eO1IIFCwotXl9cB0FBQRoxYoT69u2rb7/9VkuWLNEff/yR5QoVO3bs0I4dO/Tpp59q/Pjxqly5cuEGDAC5QHEXAAAeioyM1GOPPaZ3333X1ffxxx+rT58+ioqK8upYGbdPS0tTYmKi16O7Mo4oM5vNRW7kZ3R0tKGd2YxHnsg4q1Rmr0nGvoI8V3GUceRmbp+/3O5XVERHR+uhhx7SQw89pJSUFO3cuVNbt251/ZexmOb48eMaMGCA5s6dq1tuucVHURdt69evdy0vmG7UqFF6+OGHPdq/sGeSy/i5d9NNN2nJkiWFcu6wsDD9/e9/19///nfZbDbt3r1bW7Zscb0/M47+vnjxogYPHqyPPvpId9xxR6HECAAAABSGxMRETZ8+3dDXtWtXvf766woLC8tx/+I4I3VWnE6n3n//fUNf8+bNNWHCBJUoUSLH/YvqMoz5ITo6WufPn3e1M+aUPJVxv4z3lZn1kffyTsa8V25eq9y+vkXJzTffrOHDh2v48OGKi4vTli1btG3bNm3btk2//fab2/K269at0yOPPKIvv/yy2M5sVtA+++wzXbp0ydWOiorSpEmT1Lx5c4/293Xe6/7779cbb7xRKOcuU6aMnnjiCT3xxBNKSEjQ9u3btXXrVm3btk3bt293G4S7e/du9evXT/PmzVPZsmULJUYAyK2AnDcBAADp+vXrZxhlFB8frxkzZnh9nJiYGLe+kydPen2cjLPUREVFFbnRdBmfi9w8D5L7c5HZc1xQ58osoVYcZRxhd/jwYa+Pcfz48WI9ijGjkJAQNW3aVE899ZRmzJihjRs3atq0aW6zIFmtVr366qs+irLoy1gY1b17d48LuyQZEmSFoWTJkob26dOn3ZKfhSEoKEj169fXwIEDNWXKFK1bt05ffPGFunbtavhbYrfb9a9//csnMQIAAAAFZc2aNYZZUCpXrqy33nrLo8IuqfDvI3zp999/16lTp1ztqKgoTZw40aPCLun6eq4yyo9c1Pnz592WGcssF1WYObbiKD/yXocOHcqvcIqEmJgYtW/fXi+88IK+/PJLrV+/Xm+99ZaqV69u2G7//v25yqHjqox5r1GjRnlc2CX5Pu91/PjxQj1/uoiICLVs2VLDhg3TrFmztHHjRk2YMEENGzY0bHfu3DnDgH4A8FcUdwEA4IWwsDANGjTI0Pf555/rr7/+8uo4JUuWdEsY/P77717Hk3GfojjFfcab/dw8DwkJCTp69KihL7PnIuO54uLicnVzWRye99yoU6eOob17926vC7V27tyZnyEVOcHBwWrVqpWmTZum559/3vDY1q1bc514vd7t3bvX0L733nu92v+3337Lz3ByVLVqVcMU+TabTTt27CjUGDJjNpvVpEkTvfvuuxo/frzhsRMnTmjbtm0+igwAAADIfxnvIzp16uS2lFV2Cvs+wpcyPletWrXyaqDb9fRcZZQfea+M+4SEhGS6hFhh5tiKo4x5r9zksHbt2pVf4RRJUVFR6tGjhxYsWKC2bdsaHvvuu+98FFXRZrfbdeDAAVc7MDBQXbp08Xh/h8Oh3bt3F0RoWcq4MsFvv/3mVqDqC+lLCX/55Zfq27ev4bFffvnFL2IEgOxQ3AUAgJd69eqlChUquNpWq1Uffvih18fJOELE2yW5nE6n2z4Zj1kUZIz51KlT+uOPP7w6xpIlS5SWluZqBwUFqW7dum7bValSxW1U6dKlS70614kTJ9xuiBs1auTVMYqqWrVqKSQkxNVOSEjQqlWrvDrGDz/8kN9hFVkDBw50K/LMmDBPZzabDW2Hw1FgcRVFFy5cMLTLlSvn8b4JCQnavHmzV+cLDDSubu/t6xEaGur2ubF48WKvjlHQOnfurPr16xv6snp/AgAAAEVRxvuI8uXLe7X/ihUr8jMcrxT2PeLFixcN7aL0XPlaxrzXypUr3ZYFy8kvv/xiaNepU0dBQUE5nqsgc2zFUcbnb8OGDW7v/eykpqbq559/zu+wiqTAwEA999xzhr6TJ09muVQoea+sXbp0SU6n09UuUaKEQkNDPd5/06ZNXi/RmtfXo3HjxoZZMK1Wq9c55II2YsQIw+docnKyjhw54ruAAMADFHcBAOCl4OBgDR482ND33//+V6dPn/bqOBmXZVuzZo2OHTvm8f4rVqxwm3WqdevWXsXgD6pVq2YolpOkL774wuP9nU6n2/bNmjUzFCFd68477zS0v/zyS69mn/riiy8MN9RRUVFFsqguN4KDg9WxY0dD34cffmhI+mXn999/97sbeV8ymUxu7/2kpKRMt42IiDC0vU3KFHcZk9pXrlzxeN85c+bIarV6db7w8HBDOzevx1133WVof/XVV17/HSloFStWNLSzen8CAAAARVHGWbri4+M93nfnzp3asmVLfofksYz3JImJiQV6voz3XN48V6dPn9aiRYvyO6Qi48477zQsex8XF6cff/zR4/3PnTvnNhgoq/xfYefYipvGjRsbChdtNpumTZvm8f5z5sxRXFxcAURWNFWqVMmtL6u8Qn7kWYqrjJ+/iYmJHudiJenjjz/2+px5fT2Cg4PdPqc++OADr+IuaBEREW5LzpL3AuDvKO4CACAXunfvrtjYWFc7NTXV6xulrl27Gm4g7Ha7Xn75ZY9uchISEvTGG28Y+urWrasGDRp4FYM/CAgIUJ8+fQx9CxYs0KZNmzzaf/bs2W7TzPfv3z/L7R966CFD+8iRIx4nanbv3q3PP//c0NezZ0+vRksVdRlfq99++02TJk3Kcb+4uDiNGjXKr27i80tuRxPa7Xa3gs4bbrgh021LlSplaB8/ftzrJTGLs7JlyxraK1eu9Gi//fv3a/LkyV6fLzw83HDdJyQk6OzZs14d4/777zfEnZKSouHDh+dpCvhrC0+v7cvtdXfo0CFDO6v3JwAAAFAUlSlTxtD2dDCS1WrVyJEjCyIkj2X8t/nBgwcL9HwZn6tff/3Vo3thh8OhF1544bq+f7355pvdBhq+8847Hs8I9frrrxsGJIWGhqpnz56ZblvYObbiJiAgQL169TL0ff755/r1119z3PePP/7Q+++/X1Ch+ZTdbs/VfhlzCmazWSVLlsx024yfaRn3vZ5FR0e7zYLl6TX99ddfa82aNV6fMz9ej8GDBxsKW/fu3atx48Z5fZx0meW8pNy/Py9duuT2OUzeC4C/o7gLAIBcMJvNeuaZZwx958+f9+oYoaGhGjhwoKFv7dq1eumll7JNesXHx+uJJ57QiRMnDP1PP/20V+f3Jw888IBheTqn06khQ4Zo165d2e73448/6s033zT01a1b1y1pdq169erpjjvuMPRNmjRJX331Vbbn2rdvnx5//HHDDWNkZKQGDBiQ7X7FTaNGjdSlSxdD35QpU/Taa69lOYrrjz/+UL9+/bRv3z6ZTKZMlw4oyvbt26du3bppwYIFSk5O9ni/999/35BEsFgsWS51ULp0acM1YrVatXDhwlzHXNw0bdrU0J45c2aOS0/8/vvveuSRR7x6zdIFBATolltuMfTNnTvXq2MEBwe7LVGwfft2DRgwwO3zPTsOh0PLli1Tv379Mv2dr1y5oo4dO2rWrFlejbT88ssvtWfPHlfbZDKpSZMmHu8PAAAA+LtmzZoZ2ps3b9Z///vfbPe5ePGiHn30UZ8XHtSsWdPQXrJkif76668CO1/Tpk0NX9IfP348x0IWq9WqoUOHelyEUJw9+eSTCgj4/6/j/vrrLw0cODDbAi+Hw6HXX3/dbZm/Pn36qESJElnuV5g5tuJowIABhhmn7Ha7nn76ac2dOzfL4pJFixbp0UcfldVqLZaznM2ZM0dPPPGE1q1bl+VzkFFycrLeeustQ1/jxo3dlvtLl/EzbdOmTTpw4EDuAi5mMsvHvP7667p8+XK2+y1YsED/+te/cnXOGjVqGD6zjhw5ovXr13t1jOrVq7sVon722Wd66aWXvJohKzExUbNnz1aPHj0yfXzlypXq06ePlixZ4nGhl8Ph0JtvvmkoUq5YsaLbzIcA4G8CfR0AAABFVefOnTVt2jTDl9/eGjhwoFauXKmtW7e6+ubPn6/ff/9djz/+uFq3bq2oqChJV6dhX7JkiaZOnepWSNarVy+1adMm13H4WlRUlN566y09/vjjriTB5cuX9eCDD6pPnz7q0aOH66bSZrNpx44dmjNnjtu0/haLRe+8844h4ZiZN998U/fee69rqnSn06mxY8dq+fLl6tevn5o0aaLg4GA5nU4dPHhQ3377rT799FOlpqYajvPyyy+7jV69HowdO1Zbt241zFT0xRdf6Ntvv1WrVq30t7/9TeHh4bpw4YI2bdqkHTt2uGYOevDBB7Vq1SqdPHnStW9Or1d+8rYAJ6M6depkWoD1559/auTIkXr11VfVqlUr3X777apdu7aqVq1qSOxdvHhRW7du1ezZs92SIvfff78sFkuW527Tpo2hCHHs2LH65ZdfVL9+fZUoUcKQdAkPD9e9996bl1+1SLnvvvs0efJkV3LIarWqb9++evzxx3Xvvfe6ErN2u127du3SwoUL9c0337iSPk2bNvX6C4c2bdpox44drvbUqVO1ZcsWNWnSRKVKlXJLWD744INux7jnnnv0xx9/aObMma6+7du3q3Pnzrrnnnt01113qUGDBoqOjnY9npqaqsOHD+vPP//Uhg0btHz5csNnWWaOHz+uN954Q2+//bZuv/123XnnnapTp47rWk135coV7dixQ/PmzXP7AqFt27aZLqkAAAAAFFV169ZV7dq1DYMk/vnPf2rHjh3q27evatasKbPZLKfTqUOHDumXX37RzJkzXV+o5+Y+Ir80adJEkZGRriXpL126pLvvvlsdOnRQbGyswsLCDPfaWd3LeuqGG25Q+/bttWTJElffRx99pP3792vgwIGqX7++ayDXyZMntWzZMs2YMcOVN2jSpIk2b96c6/MXdY0aNdLjjz+ujz76yNW3e/dude7cWYMGDVKnTp1cywEmJiZqzZo1mj59utssWtWrV9fw4cOzPVdh59iKm7CwML311lt65JFHXINvk5OT9fLLL2v69Olq1aqVKlSoILPZrFOnTmnNmjU6fPiwa/+hQ4fqnXfe8Uns586dy3Peq23btm65zrS0NK1atUqrVq1S6dKl1aFDBzVp0kS1atVSxYoVFRh49atmp9OpkydP6tdff9XMmTN15MgRw3GyGyBbpUoVVa5c2bWPzWZTz5491b59e1WrVk0RERGG92JsbKyaN2+ep9+1KOndu7dWr17tau/fv1/du3fXkCFD1KZNG1fBZ2JiojZu3KjZs2e7ZpwLCQlRjRo1cizwvFZYWJhatGihtWvXuvoef/xxtW3bVrVq1VJkZKQhD3njjTeqXbt2bscZO3as9u/fr+3bt7v6vv76ay1fvly9e/dWy5YtVbt2bUPuNCEhQfv379eePXu0evVqrVu3TikpKdnmTLdu3aqtW7cqJiZGbdu2VfPmzVWrVi3dfPPNhiWYz549q40bN+rTTz91GyDZr1+/6+7zDkDRQ3EXAAC5ZDKZNGzYMA0aNCjXxzCbzZowYYIGDhyoffv2ufr37dun559/XtLVIg2Hw5Hl7DJ33nmnRo8enesY/EXLli01evRovfnmm67kk91u16xZszRr1iyZzWZFREQoPj4+0wKGsLAwjR8/XpUrV87xXGXKlNHkyZP11FNPKT4+3tW/YsUKrVixQiaTSVFRUUpMTMxyxM/TTz+trl275u6XLeJKliypzz77TP3799e5c+dc/VeuXNEPP/yQ5X4tWrTQqFGj3JbMK8xRjS+//HKe9h8yZEi2CXGr1aqffvpJP/30k6svNDRUYWFhSk5OznJkWs2aNTVixIhsz/3www/ru+++c30WOJ1OrV692pDcSVehQoXrqrirdOnSGjp0qN5++21XX1JSkiZOnKiJEycqLCxMISEhunz5stvnR/fu3XP1pcwDDzygWbNm6cKFC66+zZs3Z/mFRWbFXZL0/PPPy263G5Z8TU1N1TfffKNvvvlG0tVZvsLDw2W1WvO0bKPNZtPKlSsN12D6sVNSUgxLfVyrQoUKeuWVV3J9XgAAAMAfmUwmjRkzRv379zfMoD5//nzNnz9fQUFBCg8PV0JCgltuoHr16nrppZfUrVu3wg5b0tX7zIcffliTJk1y9cXFxWnevHmZbp/Tvawnnn/+eW3cuNGQR1m+fLmWL1+uwMBARUREKDEx0W02+jJlyuidd95Rq1at8nT+ou6ZZ57R8ePHDUVUcXFx+ve//61///vfCg4OVkhIiKtgL6NKlSpp8uTJhkKFrBRmjq04atKkiSZMmKBhw4YZ3s8nT57UnDlzstzvqaeeUqdOnQzFXYWZ8zpy5Eie815VqlTJdiDr+fPnNWfOHMPzEB4eruDgYCUkJGS5GkWvXr3Uvn37bM/95JNPGpa8tVqt+u677zLdtnv37tdVcVe7du3Upk0brVixwtV38uRJjRo1SpIUEREhSZnO2P6vf/1Lmzdv9qq4S5KeeOIJrV+/3jVg12az6eeff3YbDChdLXbOrLgrODhYU6ZM0T/+8Q9D3u3ixYuaMmWKpkyZIulqMWlwcHCmf0O8ERcX5/obns5isSgkJCTbnFrLli2vqyVoARRdLMsIAEAetG7dWo0aNcrTMW688UbNmTMny5m3EhMTMy3sCggIUJ8+fTR16lSFhobmKQZ/0b9/f40fP14xMTFujzkcjkwLM6SrhQefffaZWrdu7fG5br31Vs2ePVtVqlRxe8zpdOry5cuZFnaFh4fr9ddfd1uW83oTGxurefPm5ZiYka6+V/v27atp06a5kj3XSp+drqjKaVRXcnKyLl26lGVhV/v27fXFF18oLCws2+NUrVpV48ePN8zihP83cOBAPfroo5k+lpSUpLi4OLfPj169eun111/P1flKliypKVOmqFy5crnaP53ZbNaYMWP0zjvvqFSpUpluk5qaqkuXLmVb2FW+fPlMPztzen+mHzurwq7GjRtr7ty5hmU9AAAAgOKiUaNG+s9//pNpXsVmsykuLs4tN9CwYUN9+umnri/TfeWpp55Sr169Cu18N998s6ZMmZLpfYfdbldcXJzbl/JVqlTR559/rrJlyxZSlP4rMDBQ7733ngYNGuSa6ehaqampWRZ2NW3aVP/973910003eXy+wsyxFUft27fX559/rurVq+e4bXh4uF599VUNGzZMiYmJhseKes5LyjmvkJiYqEuXLmValBMUFKTBgwd7NGCse/fuGjp0aJZLN17v3nnnHbflhNMlJCS45VuDgoL0+uuv6+9//3uuzte8eXO98soref7eoWTJkpo5c6aeeOKJLItTrVZrpn9DrpVx6U5PWa3WLHNqJpNJvXr10pQpUwwzkQGAv2LmLgAA8mj48OHq169fno4RGRmpDz/8UOvXr9dHH32kLVu2ZHkzY7FY1LJlSw0ePFi33HJLns7rjzp37qzbb79d06dP1w8//KBTp05luW3VqlX1wAMPqE+fPh6NXMyoevXq+uGHH/T1119rzpw5+vPPP7PctnTp0urcubOefPLJLAswrjdly5bV5MmTtX37dv3444/atGmTzp07p/j4eIWHh6ty5cpq1qyZevTo4Sqiy5isDA0NzdVr509uueUWLVq0SCtWrNC6deu0c+fOTEfKXSs4OFitWrVS37591aJFC4/P1bZtW/3yyy/68ccftW7dOu3fv18XL16U1WqVw+HI669S5L344otq3ry5Jk6c6LZ8xbUaN26swYMH64477sjT+Ro0aKBFixZp8eLFWr16tfbu3au//vpLSUlJXo80vOeee9ShQwfNmzdPCxYs0J49e1yjI7MSGxur2267TR06dFDz5s0zTbhGRkZq+fLlWrFihX799Vdt377dtYxjVsxms1q0aKGePXuqU6dOXv0eAAAAQFHTuXNnVatWTRMmTNCyZcuy/Hf4zTffrAEDBqh3794ym806ceJEIUdqZDab9eqrr6pPnz767rvv9Ntvv+nw4cNKSEhQcnJylsu250WTJk20cOFCTZw4Ud9//32W9z033nij+vbtq0ceeaRQZy7ydyaTSSNGjFD37t01ZcoUrVixIsuCLrPZrAYNGujRRx/1aGBdZgozx1YcNWzYUAsWLNCKFSu0ePFi/f777zp//rxSU1MVExOjv/3tb7rzzjvVo0cPVxHdtbN7S8WjuOuhhx5S7dq1tXLlSm3cuFF79uzJMecRExOju+66S4888ohiY2M9PteQIUN0zz336LvvvtO2bdt06NAhxcfHKykpqUA+04qSiIgIzZw5U1988YU++eQTnTlzJtPtgoKC1LFjRw0ZMiTTQc3eeOCBB9SqVSt999132rx5sw4cOKC4uDglJSXlmLO6VmBgoJ599ln169dPn376qZYsWaJjx45lu4/ZbFbdunV12223qUuXLqpWrVqm27Vv317z58/XihUrtH79ev3+++9ZroCSLjw8XO3atVP//v3zPKslABQmk/N6/2sIAIAfSkxM1LZt23T27FldvHhRZrNZpUqVUvny5dWgQYPrKsly4MAB7du3TxcvXlRCQoKioqJUqlQp1alTRxUqVMjXc507d067du3SX3/9pbi4OFksFpUsWVJVq1bVLbfckuNINeRs27ZthuXpateubZgquzhIS0vTkSNHdOzYMZ0+fdo1Lb3FYlF0dLSqVq2q6tWrF5sZ9/zV8ePHtWPHDlexlcViUcWKFVW/fv0iMQvVlStXXPHHxcUpOTlZFotFUVFRqlSpkqpWraoSJUrk6tjHjx/XkSNHdOrUKV25ckWpqakKCwtTZGSkYmNjVaNGDZ/PQgAAAAD4QlxcnLZs2aJTp04pISFBISEhKlOmjGrWrKmqVav6Ojy/kpCQoG3btun48eOKj49XYGCgSpcurRo1apBD8ZDdbteuXbt0/PhxXbx4UTabTSVKlNCNN96ohg0b5nthUGHm2K5XH374ocaPH+9qP/LII4alBouDlJQUHTx4UMeOHdNff/2lxMREOZ1OhYeHq1SpUqpevbpiY2OZgasApaWl6c8//9Qff/yhS5cuKS0tzZXTadCggSwWi69DzNHp06dd8V+6dMn1HipRooQqV66sKlWq5LjKQWZsNpsOHz6sY8eO6ezZs0pMTJTD4ZDFYlGJEiVUrVo1Va1a9br6fgVA8UFxFwAAAArNf/7zH82YMcPV7t27t0dTswMAAAAAAAD+rGfPntq1a5erPX78eHXp0sWHEQEAgOKCBWQBAABQKC5cuKCvvvrK0Hfbbbf5KBoAAAAAAAAgf6xdu9ZQ2BUYGKgmTZr4MCIAAFCcUNwFAAAAr6Wmpnq1fVJSkoYPH674+HhXX+nSpdWuXbv8Dg0AAAAAAADINW/zXsePH9eLL75o6Gvfvr1Kly6dn2EBAIDrGMVdAAAA8NoLL7ygUaNGadu2bUpLS8t22w0bNqhXr17auHGjof/xxx9XYGBgQYYJAAAAAAAAeKVr1656//33dfjw4Wy3s9lsmj9/vu6//36dP3/e1R8YGKjHHnusoMMEAADXEZPT6XT6OggAAAAULYMHD9ayZcskSaVKlVK9evVUrVo1lShRQsHBwYqPj9eJEye0ZcsWHT161G3/2267TZ988olMJlNhhw4AAAAAAABk6dZbb9WVK1ckSZUrV1adOnVUuXJlRUVFSZLi4+O1f/9+bd68WRcvXnTb/x//+IcGDx5cqDEDAIDijakSAAAAkCcXLlzQihUrtGLFCo+2v+222/T+++9T2AUAAAAAAAC/duTIER05csTj7QcOHKgnn3yy4AICAADXJYq7AAAA4LXKlSvLbDbL4XB4vE/JkiX1yCOP6NFHH2U5RgAAAAAAAPilqlWraseOHV7tU61aNT3zzDPq2LFjwQQFAACuayzLCAAAgFy5ePGi1qxZo+3bt2v//v06ffq0Ll26pJSUFAUFBSk6OlqlSpVS3bp11axZM7Vt21ZhYWG+DhsAAAAAAADI1qFDh7Ru3Trt2LFDR48e1enTp5WQkKCUlBRZLBZFR0erbNmyatSokVq0aKHbbruNWeoBAECBobgLAAAAAAAAAAAAAAAAAPxQgK8DAAAAAAAAAAAAAAAAAAC4o7gLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPBfo6APiHS5cu+ToEoMgxmUyKiYmRJMXFxcnpdPo2IKAI4joC8gfXEpB3XEdA3hW366hEiRK+DqHIIK8EeK+4fWYCvsB1BOQPriUg77iOgLwrbtdRfueVmLkLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADAD1HcBQAAAAAAAAAAAAAAAAB+iOIuAAAAAAAAAAAAAAAAAPBDFHcBAAAAAAAAAAAAAAAAgB+iuAsAAAAAAAAAAAAAAAAA/BDFXQAAAAAAAAAAAAAAAADghyjuAgAAAAAAAAAAAAAAAAA/RHEXAAAAAAAAAAAAAAAAAPghirsAAAAAAAAAAAAAAAAAwA9R3AUAAAAAAAAAAAAAAAAAfojiLgAAAAAAAAAAAAAAAADwQxR3AQAAAAAAAAAAAAAAAIAforgLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADADwX6OgCgUNkTFXp4kqErOXaoFBjuo4AAAAAAAAAAAAAAAACAzDFzFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADAD1HcBQAAAAAAAAAAAAAAAAB+iOIuAAAAAAAAAAAAAAAAAPBDFHcBAAAAAAAAAAAAAAAAgB+iuAsAAAAAAAAAAAAAAAAA/BDFXQAAAAAAAAAAAAAAAADghyjuAgAAAAAAAAAAAAAAAAA/RHEXAAAAAAAAAAAAAAAAAPghirsAAAAAAAAAAAAAAAAAwA9R3AUAAAAAAAAAAAAAAAAAfojiLgAAAAAAAAAAAAAAAADwQxR3AQAAAAAAAAAAAAAAAIAforgLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADAD1HcBQAAAAAAAAAAAAAAAAB+iOIuAAAAAAAAAAAAAAAAAPBDFHcBAAAAAAAAAAAAAAAAgB+iuAsAAAAAAAAAAAAAAAAA/BDFXQAAAAAAAAAAAAAAAADghyjuAgAAAAAAAAAAAAAAAAA/RHEXAAAAAAAAAAAAAAAAAPghirsAAAAAAAAAAAAAAAAAwA8F+joAZO/YsWPavXu3zpw5o7S0NJUpU0bVqlVT9erVfR0aAAAAAAAAAAAAAAAAgAJEcZeH+vXrp02bNuX5OEOGDNHQoUNz3G7VqlWaOnWqtm/fnunjNWrU0GOPPaZ77703zzEBAAAAAAAAAAAAAAAA8D8sy1jILBZLto87nU698cYbeuKJJ7Is7JKkvXv36vnnn9eIESOUmpqa32ECAAAAAAAAAAAAAAAA8DFm7vJQQECAzGaz1/s5HA7XzyaTSR07dsx2+3fffVezZs0y9DVq1Eh169aV2WzW3r17tW7dOjmdTknSjz/+KLPZrP/85z9exwYAAAAAAAAAAAAAAADAf1Hc5aHPPvvM632WLFmiIUOGuNq33nqrKlWqlOX2K1as0PTp013tqKgoTZw4US1atDBst3v3bj311FM6c+aMJOm7775T48aN1bt3b69jBAAAAAAAAAAAAAAAAOCfWJaxAM2fP9/Q7t69e5bbOp1Ovffee662yWTSlClT3Aq7JKlWrVr69NNPFRIS4ur74IMPlJycnA9RAwAAAAAAAAAAAAAAAPAHFHcVkIsXL2rNmjWutsViUadOnbLcfunSpdq3b5+r3a1bNzVp0iTL7WNjYzVw4EBX+/z585o3b14eowYAAAAAAAAAAAAAAADgLyjuKiDff/+9bDabq92xY0eFh4dnuf3ixYsN7b59++Z4jt69e8tsNmd5DAAAAAAAAAAAAAAAAABFF8VdBWTBggWGdnZLMtrtdq1evdrVLleunOrVq5fjOcqUKaMGDRq42tu3b9fFixe9DxYAAAAAAAAAAAAAAACA36G4qwDs3btXe/bscbUrVKigZs2aZbn9vn37FB8f72o3bNjQ43Ndu63D4dC2bdu8jBYAAAAAAAAAAAAAAACAP6K4qwBknLWrW7duMplMWW5/8OBBQ7tmzZoen6tWrVqG9qFDhzzeFwAAAAAAAAAAAAAAAID/orgrn9ntdn3//feGvuyWZJTcC7LKly/v8fnKlSuX7bEAAAAAAAAAAAAAAAAAFE2Bvg6guFmzZo3++usvV/vWW2/VTTfdlO0+Z8+eNbTLli3r8fkybnvmzBmP9wUAoNixJyr08CRDV3LsUCkw3EcBAQAAAAAAAAAAAEDuUdyVzzIuyZjTrF2SZLVaDe3wcM+/gM64bcZjeSq7ZSOLFZNJJpkydJmk6+X3R7669rq5bq4hIJ/l+3XE5zyuU/xNAvKO6wjIO66j6xevN+A9PjOBvOM6AvIH1xKQd1xHQN5xHWWP4q58dPnyZa1YscLVDgsLU6dOnXLcL2NBVnBwsMfnDAkJyfZYnoqJicnVfkWOPUgKDTV0hcbEMKML8iw6OtrXIQBFXr5cR3zOA/xNAvIB1xGQd1xH15frJq8EFBA+M4G84zoC8gfXEpB3XEdA3nEduQvwdQDFyQ8//KDU1FRXu2PHjoqIiMhxv5SUFEPbm+KujNsmJyd7vC8AAAAAAAAAAAAAAAAA/8XMXflo4cKFhrYnSzJK7rNvXVsglpOM24ZmmK3EU3Fxcbnar8ixJyo0QwFcclycFGjzTTwo0kwmk6tq+PLly3I6nT6OCCh68v064nMe1yn+JgF5x3UE5F1xu46Yjcpz101eCchHxe0zE/AFriMgf3AtAXnHdQTkXXG7jvI7r0RxVz45ePCgdu3a5WpXqFBBzZs392hfi8ViaHtT3JVx1q+Mx/JUUb8wPOZ0yilnhi6ndL38/igwTqfz+rmOgAKSL9cRn/MAf5OAfMB1BOQd19H1hdcayBs+M4G84zoC8gfXEpB3XEdA3nEduWNZxnyyYMECQ7tbt24ymUwe7ZuxICsxMdHj82bcNrfFXQAAAAAAAAAAAAAAAAD8C8Vd+SAtLU3fffedoc/TJRklqUyZMob2mTNnPN739OnThnbZsmU93hcAAAAAAAAAAAAAAACA/6K4Kx+sXbtWZ8+edbUbN26sm266yeP9q1atamifOnXK430zFoJVqVLF430BAAAAAAAAAAAAAAAA+C+Ku/LBwoULDW1vZu2S3Iu7du/e7fG+f/zxh6FNcRcAAAAAAAAAAAAAAABQPFDclUcJCQlaunSpqx0WFqbOnTt7dYxq1aopKirK1d6xY4fH+27fvt31s9lsVqNGjbw6NwAAAAAAAAAAAAAAAAD/RHFXHi1atEjJycmudocOHRQREeHVMQIDA3XnnXe62qdPn9bOnTtz3O/s2bOG7Ro2bKiSJUt6dW4AAAAAAAAAAAAAAAAA/onirjxasGCBod2jR49cHSfjbF9z5szJcZ8vv/xSDofD1e7UqVOuzg0AAAAAAAAAAAAAAADA/1DclQfHjh3Ttm3bXO3y5curefPmuTpWu3btVL16dVf722+/1ebNm7Pc/vDhw/r4449d7dKlS6tnz565OjcAAAAAAAAAAAAAAAAA/0NxVx7Mnz/f0O7WrZtMJlOujmUymTRixAhX2+l0avDgwVq/fr3btrt379bDDz+slJQUV9+QIUMUGhqaq3MDAAAAAAAAAAAAAAAA8D+Bvg6gqHI6nfruu+8Mfd27d8/TMdu0aaPHH39c06dPlyTFx8fr4YcfVqNGjVSvXj0FBARo7969WrdunZxOp2u/e++9V717987TuQEAAAAAAAAAAAAAAAD4F4q7cmnjxo06efKkq924cWPdfPPNeT7uiBEjlJycrM8//9zVt23bNsPyj9fq0qWLXn/99TyfFwAAAAAAAAAAAAAAAIB/YVnGXFq4cKGhnddZu9IFBARozJgxmjZtmho0aJDldtWrV9fbb7+t8ePHKyQkJF/ODQAAAAAAAAAAAAAAAMB/MHNXLo0bN07jxo0rsOO3atVKrVq10tGjR/XHH3/o3LlzcjgcKlOmjKpVq6YaNWoU2LkBAAD8gj1RoYcnGbqSY4dKgeE+CggAAAAAAAAAAAAoXBR3+bmbb745X5Z7BAAAAAAAAAAAAAAAAFC0sCwjAAAAAAAAAAAAAAAAAPghirsAAAAAAAAAAAAAAAAAwA9R3AUAAAAAAAAAAAAAAAAAfojiLgAAAAAAAAAAAAAAAADwQxR3AQAAAAAAAAAAAAAAAIAforgLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADADwX6OgAAAOBD9kSFHp5k6EqOHSoFhvsoIAAAAAAAAAAAAABAOoq7AADA9YnCNgAAAAAAAAAAAAB+jmUZAQAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6IZRkBoChiOTkAAAAAAAAAAAAAAIo9Zu4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADAD1HcBQAAAAAAAAAAAAAAAAB+iOIuAAAAAAAAAAAAAAAAAPBDFHcBAAAAAAAAAAAAAAAAgB+iuAsAAAAAAAAAAAAAAAAA/BDFXQAAAAAAAAAAAAAAAADghyjuAgAAAAAAAAAAAAAAAAA/RHEXAAAAAAAAAAAAAAAAAPghirsAAAAAAAAAAAAAAAAAwA9R3AUAAAAAAAAAAAAAAAAAfojiLgAAAAAAAAAAAAAAAADwQxR3AQAAAAAAAAAAAAAAAIAforgLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADADwX6OgAAyBV7okIPTzJ0JccOlQLDfRQQAAAAAAAAAAAAAABA/mLmLgAAAAAAAAAAAAAAAADwQxR3AQAAAAAAAAAAAAAAAIAforgLAAAAAAAAAAAAAAAAAPwQxV0AAAAAAAAAAAAAAAAA4Ico7gIAAAAAAAAAAAAAAAAAP0RxFwAAAAAAAAAAAAAAAAD4IYq7AAAAAAAAAAAAAAAAAMAPUdwFAAAAAAAAAAAAAAAAAH6I4i4AAAAAAAAAAAAAAAAA8EMUdwEAAAAAAAAAAAAAAACAH6K4CwAAAAAAAAAAAAAAAAD8EMVdAAAAAAAAAAAAAAAAAOCHKO4CAAAAAAAAAAAAAAAAAD9EcRcAAAAAAAAAAAAAAAAA+CGKuwAAAAAAAAAAAAAAAADAD1HcBQAAAAAAAAAAAAAAAAB+KNDXAQAAAAAAAAAAAABAvrEnKvTwJENXcuxQKTDcRwEBAADkHjN3AQAAAAAAAAAAAAAAAIAfYuYuAAAAAAAAAAAAXN+Y6QkAAAB+ipm7AAAAAAAAAAAAAAAAAMAPFYmZuxISErR27VqdOHFCwcHBqlq1qpo3b66AAGrTAAAAAAAAAIkcGgAAAAAAQHFU6MVdFy9e1N69e13tW2+9VUFBQVlu/8UXX2j8+PGyWq2G/nLlyumNN95QixYtCixWAAAAAAAAwBfIoQEAAAAAAEDyQXHXp59+qunTp0uSYmNjtWjRoiy3nTVrlt566y05nU63x06dOqXHH39cU6ZM0Z133llg8QIAAAAAAACFjRwaAAAAAAAAJKnQ52RfsWKFK9F0//33Z7nd2bNn9c4770iSTCaTTCaT4XGTySS73a7nn39e8fHxBRcwAAAAAAAAUMjIoQEAAAAAAEAq5OKuhIQEHThwwJVkatWqVZbbfvrpp0pNTZUkOZ1O1axZUyNHjtRLL72k+vXru5Jb8fHx+vjjjws+eAAAAAAAAKAQkEMDAAAAAABAukIt7tq7d6+cTqecTqeioqJUtWrVLLddtGiRK4FVr149ffnll3r44YfVr18/zZ07Vy1btpR0NWn1/fffF0r8AAAAKHwmk0kBpgC3WSgAAACKK3JoAAAAAAAASFeoxV0nT56UdPULuuySUn/++afOnj3rGlk4dOhQBQcHux4PCAjQyJEjXe3Tp0/r2LFjBRQ1AAAoaigGKvrMZrMsFotCQ0IVEhyi4OBghQSHKDo6WhaLRWaz2dchAgD8lT1RofvHGf6TPdHXUQFeIYcGAAAAAACAdIVa3HXx4kXXz6VKlcpyu82bN7t+jo6O1h133OG2TdWqVXXTTTe52nv37s2nKAEAQFFEMVDxEBAQoIiICEVERCggIEipNiklRUpOufr/RKsUEBB0zTaF+s9ZAACAQkEODQAAAAAAAOkCC/NkycnJrp8tFkuW223fvl3S1dGJt99+e5azblSpUsU12vDcuXP5GCkAACgqAgICXMVbjpREpdokZ5rklGSSZLNKoeFBiogIksPhkNVqVVpamq/DRiYCAwNlsVjkcJgUf0WyJ0kBiU6dOeOQzS4FBUohMWmKLikFBkmWMLMiIiJktVplt9t9HT4AAEC+IYcGAAAAAACAdIVa3HXtzAqpqalZbpeemJKkxo0bZ7ldVFSU6+fERJZYAADgepO3YiBfR49rpRfp2e0mJSRIhw7b9f23CaqSnKz/rTIkSfrq08tq0NikHveFqkpsoCIiTLJYLEpISCheRXv2RIUenmToSo4dKgWG+yggAABQmMihAQAAAAAAIF2hFneFh///l1FZjRI8ceKETp8+7Wo3bNgwy+Nll9wCAADFW56LgVKv+C54uEkv0ruSIG3clKr3JiTK7LQptp5xO4dDWrvOpk2bbXp2eLiaNQlWZOT/F3gBAAAUB+TQAAAAAAAAkC4g503yT/ny5SVJTqdTf/75pxwOh9s2K1ascP0cFhamGjVqZHm8+Ph418/XJr0AAEDxd20x0IZNqRr50hVt2GgzFHZJ/18MNPKlK9q4OVUJCZLDYcp2eRsULrPZLLPZLGuSdPiwXe9NSJTNlv0+Npv07vhEHTpslzXp/48BAABQHJBDAwAAAAAAQLpCLe6qWbOmJMlkMslqtWrx4sVu23z99deubRo1amSYhj6jI0eOuH6+8cYb8zdYAADgt/KrGCjAVKj/FEIWQkJC5HBIdps0f2Fyjq9lOptNWrAwWXbb1SK+kJCQgg0UAACgkJBDAwAAAAAAQLpC/UazbNmyruSU0+nU66+/ri1btki6Oj38G2+8ob1797q279ChQ5bHunz5sk6dOuVqV6pUqYCiBgAA/ia/ioHMgcz05A+CgoKUnCLFXU7Tho0evpj/s36jTZcvpyk55epxAAAAigNyaAAAAAAAAEgXWNgn7NOnj8aOHSuTyaRLly6pX79+iomJUUJCgux2u0wmk5xOpyIjI3X33XdneZy1a9e6fg4JCVG1atUKI3wAAOAHgoKClGjNWzFQSKAUEWCWTd7tjyzYExV6eJKhKzl2qBSY/bI/6TNMOOzSjp02ZbLiULYcDmn7Tpvatw1xHS8tLc27gwAAAPghcmgAAAAAAACQCnnmLkm6//771bhxYzmdTlcS6tKlS7JdM+WGyWTSkCFDFBERkeVxlixZ4tq2Vq1aMpuZeQMAgOtBfhUDOexX2yaTKZ8jhDfSn3+nU7Janbk6htXqlNNpPB4AAEBRRw4NAAAAAAAAkg+Ku0wmkz788EPddtttcjqNX+A5nU45nU4NGDBA/fv3z/IYly5d0vLly11f3t12220FGjMAAPAf+V4MJIqBfCn934Mmk2Sx5O61sFhMSq/pyvjvSwAAgKKKHBoAAAAAAAAkHyzLKEmRkZH65JNP9Ouvv2rZsmU6deqUJKlKlSq6++67VadOnWz3/+677xQcHKzg4GBJUps2bQo8ZgDXiVwuK1boHFYFXvjV2HfTQP+LEygA+V4MJIqBfCl9CUVzoNSgfpDMZnk1G5vZLDWsHyRzoPF4AAAAxQE5NAAAAAAAAPikuCvdHXfcoTvuuMPr/QYMGKABAwYUQEQAAMDf5V8x0NV1GZnpyfdsNptCQ4IUEx2g5s2CtHadLeed/qdFsyBFRwcoNESGJYoAAACKE3JoAAAAAAAA1y+fFncBAADkRn4VAznSvKgKQ4FJSUlRRESQAoOkHveFatNmmzyp0woOkrrfF6rAoKtFe0lJKQUfLAAAAAAAQFFZAQIAAADFQoCvAwAAAMWMPVGh+8cZ/pM9MV9PkZKSIrNZrmKgoCDP9stYDOSwU9zlDxwOhxwOhyxhUpXYQD07PDzH1zQoSBoxPFxVYgNlCfv/YwAAAAAAAAAAAADFCcVdAACgyMmvYqA0Z1rhBIwcWa1Wmc1ORURIzZoEa9wbkWreLEgmk3E7s1m647YgjXsjUs2aBCsiQjKbnbJarb4JHAAAAAAAAAAAAChAfrMso81m065du3T8+HHFxcUpMTFRTqdTQ4YM8XVoAADAD1mtVkVERCgiwvS/YqAAff9tqkzJktP5/9uZzdIdTYPU/b5QVYkNdBUDJVyxKth34SODtLQ0Wa1WWSwWRUaaVK1aoJ55OkIBe0N15oxDNrsUFCi1eiJaUSUjFBgkWcL+v7ArLY1CPQAAcH0ghwYAAAAAAHB98Xlx15YtW/TJJ59o7dq1Sk1NdXs8s8TU6tWr9dNPP0mSYmJi9OKLLxZ4nAAAwL9QDFT82O12JSQkyGKxKCrSLEewlBZuUpXYQDklmSTZbgxQaPj/ltV0OJSQwGsJAACuD+TQAAAAAAAArk8+K+6yWq0aO3asFi1aJElyXjvFxv+YMq7D8z/VqlXTU0895foir1u3brrlllsKLlgAAOCXKAYqftLS0pSQkCCz2awQs13BGZbbDLZItjSbkpJS5HA4fBMkAABAISKHBgAAAAAAcH0L8MVJExIS1Lt3by1atMirhFS6cuXK6c4773Tt++OPPxZInAAAwP+lFwMlJCQoLc2m4CApJEQKDbn6/3CLlJZmu2YbCruKAofDIavVquSUZKWkpig1NVUpqSm6fPmyrFYrhV0AAOC6QA4NAAAAAAAAPinueuaZZ7Rv3z5XOygoSN26ddObb76pcePGZZqsyqhDhw6un9euXVsgcQIAgKKDYqDiy+l0Ks2Z5tG/EQEAAIoTcmgAAAAAAAAo9GUZFy9erHXr1rlGFjZo0EATJkxQ2bJlJUknT5706DgtW7aUdPXLvr179yoxMVHh4eEFEzQAAChSnE6nnKIQCAAAAEUXOTQAgN+zJyr08CRDV3LsUCmQvzMAAABAfir0mbs++ugj18/VqlXTzJkzXUkpb5QuXVqlSpWSdHU5poMHD+ZbjAAAAAAAAIAvkUMDAAAAAACAVMjFXefOndOePXtc7bFjxyosLCzXx6tSpYrr56NHj+YpNgAAAAAAAMAfkEMDAAAAAABAukIt7tqxY4ckyWQyqVy5cmrSpEmejhcdHe36OS4uLk/HAgAAAAAAAPwBOTQAAAAAAACkK9TirvPnz7t+rlGjRp6PZ7FYXD9brdY8Hw8AAAAAAADwNXJoAAAAAAAASFeoxV0JCQmunyMiIvJ8vGuTUSEhIXk+HgAAAAAAAOBr5NAAAAAAAACQLrAwTxYVFeX6+cqVK3k+3rlz51w/Xzu9PAAAQI4cVgVe+NXYd9NAKTDcN/EAAAAA/0MODQAAAAAAAOkKdeaukiVLun4+cOBAno6VmpqqPXv2uNply5bN0/EAAAAAAAAAf0AODQAAAAAAAOkKtbirVq1akiSn06mTJ0/q4MGDuT7Wzz//LJvNJkkym82qX79+vsQIAAAAAAAA+BI5NAAAAAAAAKQr1OKuSpUq6eabb3a1p02blqvjpKam6sMPP5QkmUwm1a1bVxaLJV9iBAAAAAAAAHyJHBoAAAAAAADSFWpxlyT16NFD0tWRh999950WLFjg1f5paWkaM2aMYcRi37598zVGAAAAAPBr9kSF7h9n+E/2RF9HBQDIR+TQAAAAAAAoZORd4acKvbirf//+KlWqlEwmk5xOp1566SW99957SkpKynHfAwcO6NFHH9X3338vk8kkk8mkm266SXfffXchRA4AAAAAAAAUDnJoAAAAAAAAkKTAwj5hWFiYxo0bpyeffFJpaWlKS0vT9OnTNXv2bLVq1UrlypUzbL9o0SIdPnxYa9eu1Y4dO+R0OuV0OiVJISEheu+992QymQr71wAAAAAAAAAKDDk0AAXGnqjQw5MMXcmxQ6XAcB8FBAAAAADITqEXd0lSy5Yt9a9//UuvvPKK0tLSJEmJiYn66aefDNs5nU49++yzhnZ6EiowMFBvvPGGateuXXiBAwBQFJCk9QpfcAEAAMBfkUMDAAAAAABAoS/LmO6BBx7QjBkzVKpUKUPCSZJruvj0aeev7Xc6nSpRooRmzJihrl27+iJ0AABQxJnNZlnCwhQYGCiz2ez6LzoqShaLRWaz2dchAgAAAJLIoQEAAAAAAFzvfDJzV7oWLVrol19+0dy5czV79mydOnUq0+3Sk1MlSpRQnz599MgjjygiIqIwQwUAAMVAQECAq3jLkWiVwyHJKTklmSQlWaXQ6CBFRATJ4XDIarW6ZkgA8gUz6wEAgFwghwYAAAAAAHD98mlxlyRZLBYNHDhQAwcO1OHDh7V161adOXNGcXFxSk1NVYkSJXTDDTeoYcOGql27NksnAQCAXAkMDJTFYpHDYVL8FcmeIIXbpISENDnSJHOAdOV8mqIkBQZJljCzIiIiZLVaZbfbfR0+AAAArnPk0AAAAAAAAK5PPi/uulZsbKxiY2N9HQYAAChm0mfssttNSkiQDh22a/F3ibon2i7nNdu9MideNetHqMd9oaoSG6iICJMsFosSEhKYwQsAAAB+gxyajzALKwAAAAAA8IEAXwcAAABQ0NJn7LqSIG3YlKqRL13R5i02Q2GXJKU5pLXrbBr50hVt3JyqhATJ4bha4AUAAAAAAAAAAAAAha3QZ+46deqU6+eyZcsqICB39WUOh0Nnz551tcuXL5/n2AAAQPFjNptlNpsVf0U6fNiu9yYkymaTZM56H5tNend8osa9EaBq1QIVFXn1GA6Ho9DiBgAAwPWNHBoAAAByhdlGAQAodgq9uKtt27YymUwymUxaunRprhNKZ86cUfv27SVJJpNJu3fvzs8wAQBAMRESEiKHQ7LbpPkLk68WdnnAZpMWLEzWiGERcjiuHsdqtRZssAAAAMD/kEMDAAAAAACA5IPiLklyOjMuguTb4wAAgOIrKChIiSlS3OU0bdjoYWXX/6zfaNPly2kKCQ1QuCWogCKE32KUIwAA/D30MXJoAAAAAAAAyN187nlkMpl8cVoAAHCdSf83h8Mu7dhpk7erKjoc0vadNjnsV9u5XQoHAAAAyA1yaAAAAAAAAPDZzF0kpwAAQEEz6eq/N5xOyWrN3WwFVqtT6RMd8O8XAAAAFCZyaEABYmZCAAAAAEAR4ZPirvyQmprq+jkkJMSHkQAAAH/l1NWqLJNJslhy96WYxWJS+vdpLGdTyBxWBV741dh300D/+7KFL4UAAIAfI4cGAAD8HrkVAACAbBXZ4q4TJ064fo6IiPBhJCiWuJEAgGIhvRjLHCg1qB8ks1leLc1oNksN6wfJ/L9/MaWlpRVAlAAAAEDBIYcGAAAAAABQtBXZ4q5vv/1W0tXlkSpVquTjaADgOkLxY7FkMplkksk101VxYrPZFBoixUQHqHmzIK1dZ/N43xbNghQdHaDQkKvHAQAAAIoacmgAAAAAAABFW4EUdy1cuNCj7X7++WeVKFHC4+Ompqbq3LlzWrt2rXbs2OHqr1evnpcRAgAAs9mskGCLgkNCDf3B0dGyOYOVkpIihzfTXPmplJQURYRJgUFSj/tCtWmzTZ7UaQUHSd3vC1Vg0NUZvJKSUgo+WAAAAH9TVJZJLqLIoQEAAAAAACAnBVLcNXLkSJlMpmy3cTqdevvtt3N9jvRlliSpa9euuT4OAADXm4CAAFksFpnNZjlSEpVqk5xpklOSSZLNKoWGBykiIkgOh0NWq7VIL0focDjkcDhkCTOrSmygnh0ernfHJ2a7T1CQNGJ4uKrEBsoS9v/HAAAAAPITOTQAAAAAAADkpECXZbw2eZSbxzOTMeHVu3dv1a1b1+vjAABwPQoMDJTFYpHDYVL8FcmeJAUkOnXmjEM2uxQUKIXEpCm65NWZrixhZkVERMhqtcput/s6/FyzWq2KiIhQRIRJzZoEa9wbAVr8XZxMkmEhygCzdMdtQep+X6iqxAYqIkIym51KSLD6KnQAAABcB8ihAQAAAAAAICsFVtyVm6STN8etVKmSHn74YfXt27dAzgMAuI7YExV6eJKhKzl2aLFbaiZ9xi673aSEBOnQYbu+/zZBVZKTde2f7a8+vawGjU3q4SpwMslisSghIaHIzuCVlpYmq9Uqi8WiyEiTqlULVOygcIVvC1RCQpocaZI5QBr/dpQiS0f8r7DtamFXUZ+5DAAAAP6NHBoAAAAAAACyUyDFXW+99Vam/U6nU6NHj5Z0dfTg888/rxIlSnh0TJPJpODgYEVGRqpq1aoqX758vsULAMD1IH3GrisJ0sZNqXpvQqLMTpti6xm3cziktets2rTZpmeHh6tZk2BFRv5/gVdRZbfblZCQIIvFoqhIsxwBkilIKhET4FqSMrR0gEKjJbP56lKMCQkUdgEAAKDgkEMDAAAAAABATgqkuKt79+5ZPjZ69GjXtPCdOnUiwQQAQCEwm80ym82KvyIdPmzXexMSZbNJ5mz+JWCzSe+OT9S4NwJUrVqgoiKvHsPhcBRe4PksLS1NCQkJMpvNCnHaFGw2Ph5ukWxpNiUlpRTp3xMAAABFAzk0AAAAAAAA5CTAFyctqOnmAQBA5kJCQuRwSHabNH9hsmw2z/az2aQFC5Nlt12d0SskJKRgAy0kDodD1qQk2e12ORwO13+X4+NltVop7AIAAIBfIIcGAAAAAACAApm5KzvLli1z/VymTJnCPj0AANeloKAgJaZIcZfTtGGjh5Vd/7N+o02XL6cpJDRA4ZagAorQd/jCDAAAAP6IHBoAAAAAAAAkHxR3VahQobBPCQDAdS19KReHXdqx0yZvJ6VyOKTtO21q3/bqrF0BAQFKS0vL7zABAAAAXIMcGgAAQN6ZTCaZZJJTDPAEAABFV6EXdwEAgMJl0tXiLqdTslpzl8SwWp1Kn+AqvVgMAAAAAAAAAPyN2WxWSLBFwSGhhv7g6GjZnMFKSUmRw9sRsAAAAD5EcRcAAMVc+qg0k0myWHJXmGWxmJRe08UyhgAAAAAAACgQ9kSFHp5k6EqOHSoFhvsoIBQlAQEBslgsMpvNcqQkKtUmOdMkpySTJJtVCg0PUkREkBwOh6xWKysUAABQkPi3Xb6huAsAgGIuvRjLHCg1qB8ks1leLc1oNksN6wfJ/L9/NZDwAAAAAAAAwHXNYVXghV+NfTcN5ItKHwoMDJTFYpHDYVL8FcmeJAUkOnXmjEM2uxQUKIXEpCm6pBQYJFnCzIqIiJDVapXdbvd1+AAAANnyeXHXiRMn9OOPP2r79u06ePCg4uPjdeXKFa9mBTGZTNq9e3cBRgkAQNFms9kUGiLFRAeoebMgrV1n83jfFs2CFB0doNCQq8cBAPwfe38e59hZ33nfn7NJqqOjUru9YBvbocq0wQHcbex229DgxDiTSQik7ckzCZMEMjeJSQI2tJ2lM2bgNqFzGyZeBkgCGR4ehmRIYGa8JtxkAoTFSy9guzEQTEM3O8YLblVJR8vZnj9OSVWqVVWl0lbfd7/qVV2qo0tHJZ2j6/yu3/W7RGQYGIaBgdGqYioy7BRDExEREVlcs2JXGBqUy3DseMi9d5eZrNWY21X6+IdL7LjI4Oo9OSYnbDzPwHVdyuWyJrSKiIjIQOtbctfU1BQ33XQTn/zkJ1sdJi3zJCIisjHq9TreWDor7eo9OQ4dDugkTyvjwFV7cthOWsGrWq1v/M6KiIiIrJFlWWQzLplsru32TLFIkGSo1+tEqylhKjIAFEMTERERWV6zYtd0GQ4eanDr7RWsJGDigvbtogjufyDg0OGAG/bm2bUzQ6Ewm+AlIiIiMqj6ktz1ve99j9e97nX86Ec/IkkSDMNo/W7u/+f/bi4FsURkQ6ictoyoKIqIogh3zGJywuaGvXluua3CcoUsHAeu35tncsLGHZttQ0RERGTQNGfqW5ZFVK/QCCCJ066OAQQ+5PIOnucQRRG+72tmvgwFxdBEZEMo/iUiI8SyLCzLYmoajh8PufX2CkEA1jIjoEEAt9xW4eb9Jtu22YwX0jYU+xQREZFB1fPkrkajwbXXXssPf/jDVtApSRLOPPNMtm7dyle+8hUgDVDt3LmTSqXCE088wVNPPdW6HeCkk07iuc99bq93X0REZGj5vo/neXiewa6dGW7eb3Lv3Q2MGm3lyS0Ldl/icFWrPDlYVkK57Pdv50VERESWYNt2a6b+1DSEVTArCY8/HhGE4NiQ3RJT3JpWMXXHLDzPw/d9wjDs9+6LLEkxNBEREZGVZbNZogjCAO64q9bRagWQJnjdeVeN69/iEUVpO76v+KeIiIgMpp4nd/2v//W/+PrXv94KMJ1//vm8853v5AUveAHf//73ufLKK1vb/s3f/E3r/9/73ve44447+Nu//Vump6cplUpcfPHFvPnNb+71UxARERlKcRzj+z6u61IoGGzbZnPdGz3Mx3Jtg5+XX1NkfKs3M/iZJnapuoWIiIgMombFrjA0KJfh2PGQe+8uM1mrtSWvf/zDJXZcZHB1K3l9dukV9XFkUCmGJiIi0h+GYWBgkCxX8l4GhuM4VHw4UYo5cLDDzK4ZDx4MKJVisjmTvOts0B52UVghd/y9bTfVJq5V5UVZPb2XRESGjtnrB/zIRz6CYRgkScLZZ5/NRz7yEV7wghcALFk+HuDss8/mzW9+M3fddRc//dM/TRzHvP/97+eWW27p1a6LiIgMvTAMKZfLGEbEeAGKRcjnDSYnbM7bZjM5YXPqaSbFIowXwDAiyuWyqlqIiIjIQGpW7Jouw4FDDfbdOM2BgwHzV6GLIrj/gYB9N05z8HCDchmiKE3wEhlUiqGJDKGwQu7ozW1fhJV+75WIdMCyLFzXJZfNkc1kyWQyZDNZisVia/lvGTymmQ5zRiE8ciRgtasqRhE8fCQgCtvbExERERk0Pe2l/PjHP+bb3/42kAahbrjhBgqFwqraePazn80HP/hBnv3sZ5MkCR/84Ac5dOjQBuytiIjIaIrjmHK5PFOpIiDjQDYLuWz6Pe9CHAdztlE1CxERERk8lmVhWRZ+FY4fD7n19sqKS7AEAdxyW4Vjx0P86mwbIoNGMTQREZHeME0Tz/PwPA/TdGgEUK9DrZ5+r/hgms6cbZT8M0hml64G319bpTXfT1qTQ5ZLoBcREZE1iHzsp+9r+yLSMshr0dNe6Je//GUAkiQhn8+3lY9fja1bt/JHf/RHrZ8/+MEPdmX/RERENpMoivB9n1q9Rr1Rp9FoUG/UKZVK+L5PtNqpbiIiIiI9lM1miSIIA7jjrtqKiV1NQQB33lUjDNKZ+tlsdmN3VGQNFEMTERHZeLZt43keSWIxNQ2lElQqCceOh3zjaMix4yFPPBFTKsHUNCSJhed52Lbd712XGclMVpZhgOuuLTHLdQ2aOV3J/BLAIiIiIgOipz3Qp59+Gkgz35///OevODu20WiQyWQW/d3P/dzPUSwWKZVKPPDAA5w4cYItW7Z0e5dFREQ2hSRJSFDwQkRERIaH4zhUfDhRijlwsMPMrhkPHgwolWKyOZO862zQHoqsnWJoIiIiG8s0TVzXJQwNymU4djzk3rvLTNZqbUt8f/zDJXZcZHD1nhyTEzaely7tXfZVwWsQNFccsGzYsd3BsmgtzZizfXaccX/b9nd+7f+iFuZbP1sWXLjdwbLb2xMREREZND3tfU5NTbX+f8oppyz4/fwgVL1eX7It0zR54QtfCKSVR44cOdKlvRQRERERERGRQdZcDicK4ZEjAastOBpF8PCRgChsb09kUCiGJiIifRNWyB29ue2LsNLvveo613WJIoPpMhw41GDfjdMcOBgwv3BTFMH9DwTsu3Gag4cblMsQRQauO9afHZcFgiAgl4UtRZNLd61u4sZluxyKRZNcNm1HREREZFD1NHo5N1jqOAs7WPl8vu3nJ598ctn2TjrppNb/n3jiiXXunYiIiIiIiIgMA2Nm3ZQkAd9fW/VR309ag3fN9kQGhWJoIiIiG8eyLCzLwq/C8eMht95eWXGJ7yCAW26rcOx4iF9N21AfcjDU63UsC2wHrt6TY5Gu06IyDly1J4ftpBW8lkuWFxEREem3ni7L6Hle6//lcnnB713XJZPJ0Gg0APje977H5OTkku3VarXW/5955pku7una/OhHP+LRRx/lhz/8Ib7vk81mOeWUU5iYmOD5z3/+kuXxRUTWSgEEEREREdmMkpmsLMMA111bn9h1DZrd6WR+iQaRPhv1GJqIiEg/ZbNZogjCAO64q7ZiYldTEMCdd9W4/i0ekQmWaRKttoSsdF0URURRhDtmMTlhc8PePLfctny1OceB6/fmmZywccdm2xAREREZVD1N7jr77LNb/19qRuHk5CRf//rXAXj44Ye5/PLLl2zva1/7Wuv/2Wy2S3u5OnEcc8899/CRj3yEr371q0tu5zgOF154Iddccw0ve9nLFt3m+9//Pq94xSvWtB/Petaz+PznP7+m+4rIcLEsi+zYGLbdfgovjo8TWC71el0XoiIiIiIy0uI4BsCyYcd2B8tiVUszWhZcuN3BstvbExkUoxhDE9kUIh/76fvabzvn9WDnF99eRPrCcRwqPpwoxRw4uLql+B48GFAqxWSL4Gni7cDwfR/P8/A8g107M9y83+ST95zAAOZO4zAt2P0Sh6v25JicsPE8sKyEctnv/k6FFXLH39t2U23iWn0miIiIyJr0dFnGc889F0hnxH7rW99adJuf/umfbm3zD//wD0sGWL/whS/wwx/+sPXzmWee2eW9Xdn3v/99XvOa1/DHf/zHyyZ2QbpW96FDhzh48GCP9k5ERo1pmjMXqB6m6RBFEIUQhun3ig+m6czZpqeneBERERGRngqCgFwWthRNLt3V4dorMy7b5VAsmuSyaTsig2bUYmgiIiKDohkzjUJ45EiwqgkCkE4oePhIQBSmP2tlhcEQxzG+72PbCYUCbNtm83tvyPO882zOOtPkjNNNzjrT5LZ3j3P9Wzy2bbMpFMC2E3zf7+9kj7BC7ujNbV+Ey1ceExERkc2npyP/p59+OmeccQaQloOfO2uw6d/8m38DpB3iH/zgB7zjHe9Y0Kn65je/yY033tjqNBuGwUUXXbTBe9/u6NGj/Nqv/RqPPPJI6zbDMNi+fTu/+qu/yu///u/z+te/nl/8xV9sm225GqZpttZ+X+lrfgUfERkttm3jeR5JYjE1DaWptAz4Mydinv5JzDMnYp58MqZUgqlpSBILz/N0bhARERGRkVWv17EssB24ek8Op8P8rowDV+3JYTtpBa96vb6xOyqyBqMUQxMRERkkzc/EJAHfX9vS3L6foEW9B08YhpTLZQwjYrwAxfF0+cWTtpicvNXkpC0mp5xqUizCeAEMI6JcLhOGYb93XURERGRFPR/1v/TSS7nzzjsB+NznPteaZdj00pe+lLPOOosf/OAHJEnCxz72MR544AFe9rKX4Xkex48f51/+5V8Iw5AkSTAMgyuuuIKtW7f27Dn85Cc/4bd/+7fbyuJfeeWV/Mmf/AlnnXXWovf5xje+wR133EGhUOj4cfbv38/VV1+97v0VkeFmmiau6xKGBuUyHDse8sl7KryqGLYFEW766BTnb/e4ulVS2sB1XcrlspaZEREREZGRE0URURThjllMTtjcsDfPLbdVWG6kzXHg+r15Jids3LHZNkQG0SjE0ERERAZNkqSdRcMA111b1S3XNVC9rsEUxzHlchnLssgmARmr/fd5F4I4oFqt6zpAREREhkrP1+xqzipMkoS77rprwe8dx2Hfvn2toFOSJHz3u9/lox/9KH/913/NP//zP7ctmeC6Ln/wB3/Qq90H0qSrxx9/vPXz7/7u7/IXf/EXSyZ2AZx33nns27ePN7zhDb3YRREZIa7rEkUG02U4cKjBvhunOfzFYMGYVRzB/Q8E7LtxmoOHG5TLEEVpgpeIiIiIyCjyfR/LSvA82LUzw837C1y6y2H+6jiWBbtf4nDz/gK7dmbwPLCsdAkWkUE1CjE0EZEFtPyY9FlzEqxlw47tDpa1wh3msSy4cLuDNVM6oZksJoMliiL8apUwDFsTOqIoojQ1he/7SuwSERGRodPzyl27d+/mN37jN1od3scff5zTTz+9bZsrr7ySffv28e53v7sVoJqrGbByXZf/+l//K895znN6tfs88MAD/MM//EPr51e84hXs3bu3Z48vIptLc+nVqWk4fjzk1tsrBAGwTNAhCOCW2yrcvN9k2zab8ULahi5YRURERGTUxHGM7/u4rkuhYLBtm811b/QwH8vx+OMRQQiODZdfU2R8q4ftgDs2m9ilCrcyyIY9hraphRVyx9/bdlNt4lqw833aIRERmSsIAnJZhy1Fk0t3Odz/QLDynWZctsuhWDTJZZXYNSz0OomIiMgo6Hlyl+M4vPWtb11xu9/6rd/iwgsv5H3vex8HDhxYMNPwyiuv5Nprr+Xss8/eyN1d4K//+q9b/3cchz/5kz/p6eOLyOaSzWaJIggDuOOuGkGHcYYggDvvqnH9WzyiKG1HVQlERIaPYRgYGCTLrTEmIrLJhWFIuVzGdV3GCxZRBuK8weSETQIYQHCaSS6fVlqIoohyeYgSu5QksmkNewxNRERkUNXrdTzPwXbg6j05Dh0OOoq7Zhy4ak8O20n7lUPTnxQRERGRodfz5K7V2L59O//tv/03qtUqP/zhD5mammJ8fJxzzjkHx3F6vj/f+973OHDgQOvnyy+/XIExEdlQjuNQ8eFEKebAwc5nkAE8eDCgVIrJ5kzybu/PmSIisjaWZZHNuGSyubbbM8UiQZKhXq+rGqOIyDxxHFMul9NzqBWSmdf9zbgQxAHVqs6hMpoGLYYmIiIyyJpL9LljFpMTNjfszXPLbRWWm1flOHD93jyTEzbuGET1CFQRSkRERER6ZKCTu5rGxsY499xz+70bfOITn2gr3/rKV76yj3sjIqPONE0AohAeORKw2jGoKIKHjwRceUW21Z5mk4mIDC7TNHFdN11Kt16hEUASM1t1xodc3sHzHKIo0nJiIiKLiKIIv+4T12tt1Q+rpZIqXcmmMCgxNBERkUHn+z6e5+F5Brt2Zrh5v8m9dzcwau05W5YFuy9xuGpPjskJG89Ll/gu+1Xc/u2+iIiIiGwyQ5HcNSgeeeSRtp8vvvji/uyIiGwKhmEAaTDB99c2C8z3k1YwotmeiIgMHtu2cV2XKDKYmoawCmYl4fHHI4IQHBuyW2KKW8F2wB2z8DwP3/cJw7Dfuy8iMpCSJNGytiLSH5GP/fR97bed83olmYqIDJA4jvF9H9d1KRQMtm2zue6NHuZjubZr8cuvKTK+1Zu5Fk8Tu3zfJ0402UpEREREekfJXavwla98pfX/Zz3rWZx22mkAfOc73+GOO+7gvvvu40c/+hHVapWTTjqJiYkJXvrSl/LLv/zLnHzyyat+vH/6p3/iE5/4BN/61rd45plnyGazbNmyhW3btrFz505+4Rd+obUPIjJ6mpUCDQNcd22JWa5r0MzpSlQmXERkIDUrdoWhQbkMx46H3Ht3mclarW228Mc/XGLHRQZXt2YLG7iuS7lc1jleRERERESkX8IKuePvbbupNnGtEjqHQBiGlMtlXNdlvGARZSDOG0xO2LNVtE8zyeXTCl5RFFEut1fR1oRaEREREekFJXd1aHp6mieeeKL189lnn00Yhrz//e/nr/7qrxZUTPB9nx/84Afcd999vPe97+W3f/u3+f3f//1VdfQ/+9nPtv1crVY5ceIE3/72t/nnf/5n/vzP/5xf+ZVf4Q/+4A/I53WhKH2gwMWGagYJLBt2bHdmAgid39+y4MLtDpbd3p6IiAyWZsWu6TIcPNTg1tsrWEnAxAXt20UR3P9AwKHDATfszbNrZ4ZCIU3wqlQq/dl5EREZfZGPWf3ugttERERERkEcx5TLZSzLImuFZJz232dcCOKAarVONBOctSyL7NgYtt0+xFYcHyewXOr12W1FRERkOBmGgYGhqvAyMJTc1aETJ060/XzKKafwn/7Tf+Luu+9e8b6+7/Oe97yHr3/969x2220LOvxr1Wg0+OhHP8qBAwd4//vfz0/91E+tua1NM7tk5iTcfpMB859/p9ttdv38O23YYy/SLou3O/e42ahjKAgCclmHLUWTS3c53P9A0PF9L9vlUCya5LJpO13bx1E8PkbtOa3m+WzEc19Fm10/jlb1fDo/3qUDG3Ic9fk12oh+w7xtDdPAsiymqnD8eMitt1cIAlqJuYsJArjltgo37zfZts1mvGC19S83Tb9usxu1z64B0Iu+nfTIqB0ffX8+g3WNJINp07zeHR+PutboSFghd2zepMHJHk4a7PM1TH/PmX18j/b9c20DjNpz2qRxpTiOqTaqJPX6zOMBCVSnplrnJcuyGBsbw7IsoopPHEGS0KryVfMhW3TwPIcoiqhWq5pw2ynFlVbebqPapLvHkgyJUfvsGgA6jkaDZVlkMi6ZbK7t9kyxSJBkaDQaw5fA3e/rrqG5Rhp8fU/u+t73vseBAwf413/9V5566ikqlQpB0HnyAqQv7H//7/99g/YwNT093fbz/fff37otl8vxW7/1W/ziL/4iP/VTP0UQBDz22GN8/OMf55577mktk/N//s//4dZbb+WP/uiPln2s5z3veVx55ZVcdNFFPPe5z2XLli0kScJTTz3FkSNHuOuuu/j85z/f2v7YsWP8zu/8Dh/72Mc46aST1vT8tmzZsqb7DZ3QgVz7yTi3ZcvCk1en2212/fw7bdRj1xowLwFzy5Yi5LYse7disbi+x12B48RcvWeML34pJAjSZIAFoWPTwDTTWzMOXLVnDMcBxzGBLNlstjs7M4rHx6g9p9U8n4147mtssyvH0Woee43HuyxhI95L/X6NNqLfsMi2YWwQBnDn3XWiyMA0wTSNBRcv5pzzfBTBXffU2XudTRwbeJ7X2m6jP5NkQIzaZ9eA0XE05Ebt+Oj387GfAdNsu2lLcRy8LcveTcdR9w1yDE1xpXnHY7/7scOi3+e3AbqG6fk5s5/v0X6/7hth1J6T4kptN2XnPXYQJExPJwRlyAdQLidEcYJlGkw/GTMOOA64rs34+Pj692mzGKBzctf0KK7U7TEu9eM3iVH77BowOo6GW1grE4QQx7QyuMMq5PIZCoUujbX2Ur+P92G5RhoCfUvu+trXvsbNN9/M4cOH19VOkiQ9ydrz/fYlB5qJXVu2bOHDH/4w559/fut3uVyOiy++mIsvvpjdu3fzx3/8x63ZGR/60Id49atfzfOf//wFj7Flyxb+/u//ngsvvHDRfTjrrLM466yzeOUrX8nnPvc5/vAP/5BSqQTAd77zHd75zndyyy23dOX5ishgcV2DyQmL69+c59b/uvzSW44De9+cZ3LCwnWV1SwiMuhq9YQTpZiDh1Y3OHvgYEBpKiY3ZuLZOt+LiIiMqmGLoYmIiIyqRiNN7Dp2POKf7vX5pWLI3JWa3vF30zx/e4GrfjnH5IRFoQCZjD57RUREhkEQJPh+QlBNMMsJj/84JggSHMcgW4wpbk1wnATXNXAcfb5L7/UluevjH/8473jHO4iiqFXVatCDS5lMZtHb3/GOd7Qlds336le/mq985SutWZFJkvChD32Id7/73Qu29TxvycSu+S6//HL+8i//kte97nWEYQjAP/7jP/KGN7yB8847r6M25pq/7OTICivkarW2m2onToAdrG27za6ff6eNeuxaCW/mmGoqnyhBbuE5wDCMVtZwqVRqnc+6zTRN8vk8nmdwyU6HP/tTj0/e8wzQFjvAMBJecqnNVXtyTE7YeB6YZszUVKW75b9H8fgYtee0muezEc99FW12/ThazfNZxfEuHdiI91K/X6ON6DfM2dYwDDKZDGEAjxwJCILZ938cJwuOhzhOiOO528DDjwRceUWWOI4xZ6qqbORnkgyQUfvsGgC96ttJD4za8dHv51OZYnze9cRUaQrCEws2HbXjaBCqUQ1LDE1xpXnHY7/7scOi3+e3Pl/D9PWc2c/3aL9f940was9JcaUFj50vZkgSi+lpOHCowa23V8hbDV75inl3DxPuu7/BwUMNbtibZ9fODIVCgmFEVCrLT9jd9BRXWnm7jWqT0evHSwdG7bNrAOg4Gk7NMdgwNCiX4djxkHvvLjNZqzH3Jfz4/6/EjosMrm6NwSbYdkKl0uUx2I3Q7+N9WK6RNkC340o9T+76whe+wNvf/vbWbEHDMEiShYNXgyafX1iW7txzz+Xnf/7nV7zvNddcw0c/+tFWqfzPfvazbQNwa3XxxRfz7/7dv+NjH/sYkCaO/b//7/+7puSuQf/7d02SkJDMuymB+c8/rGA9/YX27c75v8ByN3oPh0unf8+heuxF2mXldjfyPBZFEb7v47ouhYLBtm02E2/Ik3/IplyOiWKwTLjt3eMUTvWwHXDHwLISfN/v/trP/XzdN8qoPafVPJ+NeO5rbLMrx9GqHnttx7ssYUOOoz6/Rp0+pzUec80FdpMEfH9tz8n3k0V2Z/D71tIFo/bZNWB0HA25UTs++v58Bu8aabMYphjaIO7Thuj4eNS1Rkf6fX4boGuY3h/bfXyP9vt13wij9pwUV2q7yTRNLMtiajod8L319gpBAFhLNxMEcMttFW7eb7Jtm814wcI0ze7HaUfJAJ2Tu2aD40pda3PBQwxmf1O6bNQ+uwaMjqPhMTY2RhQZTJfh4EwCt5UETFzQvl0Uwf0PBBw6HMxJ4DYYGxujXC73Z+c71ffjfViukQZfz5O79u/f3wpKJUnCKaecwmte8xp2797NT/3UT1EoFLCsZXrFfbJYctfP/uzPdnTfU045hQsuuIAvfelLQJpl+M1vfnNNSVjz/cqv/EoruQvgwQcf5M1vfvO62xWRwRKGIeVyGdd1GS9YRCYYDpy0xWwu90zuVJNcESwrTQgrl/3BzxYXEdnEWkleBmteRtd1DQaweIeIiIh0wbDG0EREREZJNpsliiAM4I67agQdFrkIArjzrhrXv8UjitJ2fN/f2J0VERGRjlmW1UrgPj4ngdtaJoNmsQRuy7KUwC090dPkrq997Wt8+9vfbpWPv+iii/jABz6A53m93I01Ofnkk3Ecp1V9C2Dbtm0d3/+8885rJXcB/PjHP+5KctcLX/jCtv364Q9/uO42RWQwxXFMuVzGsiyySUBmXgw/70IQB1SrdXUiRESGQHPWiWXDju3OTHJu5/e3LLhwu7PsxabISAor5I6/t+2m2sS1YC+ckCMiMqyGOYYmIiIyShzHoVKHE6WYAwdXt3zRgwcDSqWYbM4k7zobtIciIiKyFkrglmHT06Ggr371q0A6kGXbNrfccsvQBKUcx+Gcc87hW9/6Vuu25nqfnZi/balU6sp+mabJli1bePLJJwF45plnutKuSFdpAK6roijCr1cxw7AV6AeYnpqCbLaPeyYisklFPvbT97Xfds7rO/qci+KIXBa2FE0u3eVw/wOdB4ov2+VQLJrkshAEAVl9BoiIiIyMYY6hiYjI5mMYBgbGgiV3hl0z9hqF8MiRYFUTsiCdwPXwkYArr0iv103T1EoLIiL9pjFLmeE4DhVfCdwyPMxePlgz8cgwDLZv387pp5/ey4dft+c+97ltPzcajY7vO3/bbg6+1Wq1DWlXRAZfc71hrTksIjKcojDCssB24Oo9OZwOrwMzDly1J4ftpBW8VtMvFRERkcE37DE0EREZfZZl4bouuWyObCZLJpMhm8lSLBZxXXcklg42SJO7kgR8f23xV99PaIZu507UFRERkf4xzTRNZr0J3FHY3p7IRurpu8yZM1p1xhln9PKhu+KSSy5p+/nHP/5xx/d9/PHH234+6aSTurJPzzzzDNPT062fTz755K60KyIiIrIWhmFgGqYClh2Kk5goinDHYHLC5oa9+RUTvBwHrt+bZ3LCxh1LKzpqOV4REZHRMuwxNBERGV2maeJ5Hp7nYZoOjQDqdajV0+8VH0zTmbPN8A52NiuRGQa47triHK5r0AyRaIKuiIjIYGiOXyiBuwciH7P63bYvIi1juRY97VWfddZZrf8P47qjV155ZduB+dBDD3V0vyRJeOSRR1o/W5bF85///K7s0+c///m2n7vVroiIiEinNsNs3Y3k+z6WleB5sGtnhpv3F7h0l8P860HLgt0vcbh5f4FdOzN4HlhWMpT9ahEREVnesMfQRERkNNm2jed5JInF1DSUSlCpJBw7HvKNoyHHjoc88URMqQRT05AkFp7nYdt2v3d9TZrJWJYNO7Y7rDa8YVlw4XYHa+bpa0lGERGRwdD8jFcCtwyTnvaoX/ziF2OaJkmS8K1vfauXD90Vp59+Oi9+8Yv50pe+BMBnPvMZfvKTn7B169Zl73fffffxwx/+sPXzBRdcgOd5696fIAj4b//tv7Xdtnv37nW3KyIiItIJ0zRbyVtRvUIjgCSGBDCAwIdc3sHzHKIowvd9BTIXEccxvu/jui6FgsG2bTbXvdHDfCzH449HBCE4Nlx+TZHxrR62A+7YbGJXHMeaGSQiIjJihj2GJtJ1YYXc8fe23VSbuBbsfJ92SGTzacYAwtCgXIZjx0PuvbvMZK3G3PHMj3+4xI6LDK7ek2NywsbzDFzXpVwuD2VMIAgCclnYUjS5dJfD/Q8EHd/3sl0OxaJJLpu2IyIiIoOh2SeZm8C9msUxlMAt/dDTyl0nn3wyL3/5y0mShO9+97t87Wtf6+XDd8W1117b+n+9XudP//RPl92+Uqmwf//+ttt+8zd/c8F2P/7xjzlx4kTH+xHHMW9729s4evRo67ZTTz2VV77ylR23sZlpySgREZH12WyzdTdaGIaUy2UMI2K8AMUi5PMGkxM2522zmZywOfU0k2IRxgtgGBHlcpkwDPu96yIiIrIBRiGGJiIio8V1XaLIYLoMBw412HfjNAcOBswvVBFFcP8DAftunObg4QblMkRRmuA1jOr1OpYFtgNX78kxZ+XkZWUcuGpPDttJB4Dr9frG7qiIiIisyvwE7tVQArf0Q88XO7/++uvJZDIA7N+/f+gGpC677DJ+5md+pvXzJz7xCf74j/+Y6enpBdt+97vf5T/+x//I8ePHW7e96EUv4hd+4RcWbPvoo49yxRVX8K53vWvFgN3Xv/51fuu3fos77rij7fbrr79+aC+QekFLRomIiHTH3Nm609Nw9GjIe/6izD3/UOPg4YCHHg44eDjgTW8uccvtZY4eDZmehjBMg7mm2fMu6FCI45hyuTwzmzkg40A2C7ls+j3vQhwHc7bRbCAREZFRNuwxNBERGR2WZWFZFn4Vjh8PufX2CiuNYwYB3HJbhWPHQ/zqbBvDJooioijCHYPJCZsb9uZXTPByHLh+b57JCRt3bLYNERERGRxK4JZh0/PSCeeddx7veMc7+JM/+RMeeughrrvuOt71rndRKBR6vStr9u53v5tf/dVfbSVt3XXXXXz605/mZS97Geeccw5BEPCNb3yDAwcOtGVqbt26lfe85z1LDmhWKhU+9KEP8aEPfYhTTz2Vn/7pn+bss8+mUCiQJAk/+clPOHLkCI899tiC+77+9a/n6quv3pgnPOTWtGRUv3daRERkgM2drXvwUINbb69gJQETF7Rv15yte+hwwA178+zamaFQmF2OQRYXRRF+3Seu1zAMAwODhIRqqaRlZ0RERDaRUYihiYjIaMhms0QRhAHccVdtxcSupiCAO++qcf1bPKIobcf3/Y3d2Q3g+z6e5+F5Brt2Zrh5v8kn7zmBQTrO0GRasPslDle1lqQEy0ool4fvOUsPRT720/e133bO6xUDEhHZYLMJ3FYrgfuW2yrtH+7zKIFb+qkv6+Ls2bOHTCbDjTfeyL/8y7/wb//tv+XXfu3X2L17N+eeey7j4+P92K2OFYtFPvjBD3Ldddfx1a9+FYDp6Wk+8YlPLHmfyclJPvCBD3DmmWd29BhPPvkkn/vc51bcLpfLsW/fPl7zmtd0tvObjG3brQHoqWkIq2BWEh5/PCIIwbEhuyWmuDXNynXH0iWj/MbT/d51ERGRgdScaTs13T5b11qmV9mcrXvzfpNt22zGC2kbuuhZWZIkJMtdTYqIiMhIG/YYmoiIjAbHcajU4UQp5sDB1S099ODBgFIpJpszyburW/JoUMRxjO/7uK5LoWCwbZvNxBvy5B+yKZdjohgsE2579ziFU72ZsYY0scv3fVXeFhERGVCLJXDfe3cDo0bb0tOWBbsvUQK39FdfkrsAfvEXf5Fzzz2X1772tTz99NP85V/+JX/5l3+5prYMw1hxKcNuO+uss/jYxz7Ghz70IT72sY/xgx/8YNHtTjvtNF73utfxG7/xG+RyuSXbe97znsd/+A//gUOHDnHs2LEVO/unnnoqV111Fb/+67/O6aefvq7nMqrmLhlVLsOx4yH33l1mslZrOxl//MMldlxkcHXrZGzgumMkhkGSaDBVRERkrs0+W1dERESk14Y9hiYiIsPNMAwAohAeORKw2nlaUQQPHwm48ooskMbthzHZKQxDyuUyrusyXrCITDAcOGmL2VolJHeqSa6YDgBHUUS5rMQuERGRQbZYAvd1b/QwH8u1FYu5/Joi41uVwC391bfkrr/5m7/hPe95D+VyGWNIk2gcx+ENb3gD11xzDY8++ijHjx/nySefxDAMtm7dyvnnn8/zn//8jto6++yzefvb3w6kGaLf/OY3+f73v89TTz2F7/sYhkGhUGDr1q284AUv4Oyzz97IpzYS1rVklGNgm6YqioiIiMzjOA4Vf/PO1hURERHptVGIoYmIyPAySJO7kgR8f22fQb6ftCZcN5PFhlEcx5TLZSzLIpsEZKz23+ddCOKAarWusQUREZEhsSCBOwNx3mBywm4lcAenmeTySuCW/upLcteNN97IHXfcQZIkrY588/tqAlSDEtAyDIMLLriACy64YOWNO+C6blfb24zWvWTU2VA0jIF5j4mIiAwC0zQBzdYVERHZjJoDu9JboxZDExFZlbBC7vh7226qTVwLdr5PO7Q5JaSfH4YBrru2/oDrGjRzukbh8yiKIvx6FTMM25LVpqemIJvt456JtDMMAwOjdRyLiMji2hK4rZDMvLnpGSVwywDoeXLX//gf/4P//b//N9AeWMrlcpx99tkUCgUsy1quCZEVrXvJqN9LZyKZqt4lIiLSMjuQ2KPZupZLePLuBbeJiIhIb1iWRTY31krwbioWxgmyLvW6gpobSTE0EREZBM3PH8uGHdudmYoVnd/fsuDC7U5r4vWoTfIahWQ1GS2WZZHNuGSyubbbM8UiQZJRH15EZBlpArdPXK+1JchWSyVNMJC+62lyVxAEvO9972sFpJIk4eUvfznXXHMNF1100VCX45XBst4lo6Z/PWZLDJal96SIiEhTM2Cp2boiIiKjzTRNXNdNE4fKiy+l7DgZHMdJA5++liPoNsXQRERkkARBQC4LW4oml+5yuP+BzmPul+1yKBZNctm0HRHZGHP78FG9QiOAJGZ2STEfcnkHz1MfXkSkE0mSqPKhDJSeJnd98Ytf5JlnnkmzHA2Df//v/z033XRTL3dBNoFuLBn16FcDzp5JvtXSBSIi0rERXzKiGfDRbF2RwaElFkSk22zbxnVdDGPm2joCa2ZQqMn3ITeWToiyLBvP8/B9XxUAukgxNBERGST1eh1vDGwHrt6T49DhoKPVMjIOXLUnh+2kMYFqtb7xOyuyCTX78FFkMDUNYRXMSsLjj0cEITg2ZLfEFLemx7E7ZrX68GEY9nv3RUREpAM9Te46evQokGY55vN59u3b18uHl02iG0tGVWsJyWiMw4uIiHRVOlvX0WxdkT7SEgsislGas/1N0yQIoFJJCKdhSwT1ICGJwTDhx0/EFK0E24Z83sBx0vtVKpV+P4WRoRiaiIgMkiiKiKIId8xicsLmhr15brmtwnJzTBwHrt+bZ3LCxh2bbUNEuqvZhw9Dg3IZjh0PuffuMpO1GnPrFnz8wyV2XGRw9Z4ckxM2nmfgui7lclkFDkRERIaA2csHq9VqQJp8s2PHDsbGxnr58LJJdGPJqLGcgRY4EBERWaher2NZs7N1ncVXalpg/mzdel2zdUVWyzRNPM/D8zxM06ERQL0OtXr6veKDaTpztunp5Z6IjIBmYle9AVNTCf/69ZD3vLfCk0/FlEoJU9MJpVLCm66b4qZ3lvnXr4dMTSXUG+k5SnGe7lEMTUREBo3v+1hWgufBrp0Zbt5f4NJdDvNXCrYs2P0Sh5v3F9i1M4PngWUl+L7fnx0XGXHNil3TZThwqMG+G6c5cDBgfr5WFMH9DwTsu3Gag4cblMsQRWmCl4iIiAy+nlbuOvnkk1v/P+mkk3r50LKJdGPJqBe9wIHvpD9rxoKIiMgszdYV6Q8tsSAiG82yLGzbJgigPJ3whfsavGN/hVNyAb872b5tFMFnPxdw/wMBb39rnt0vzWCOGzhOT8NMI00xNBERGTRxHOP7Pq7rUigYbNtmc90bPczHcm3XJZdfU2R8qzdzXTKb2NWM28sywgq54+9tu6k2cS3YWmZkpEU+ZvW7C27rhGmYWJbFVBWOHw+59fYKQZCOjy0lCOCW2yrcvN9k2zab8YKFZVnreAIiIiLSCz2Nup1xxhmt/09PT/fyoWWTWe+SUYXxANNUYpeIiMhifN+fqQxkzMzWNbn37gZGjbZZgZYFuy9xuKpV7j0N6pbLmq0rshrdWGJBAykispJcLl3q1a8mHP1myDv2pwND5Ja+TxDATe+s8JfvNTn/fJuioxrY3aIYmoiIDKIwDCmXy7iuy3jBIspAnDeYnLBJAAMITjPJ5ZmZdB1RLiuxS2SjWLZFFEEYwB131dL+eweCAO68q8b1b/GIIshkMhu7oyIiIrJuPU3uuvjiiykUCkxPT/Poo4/28qFlk6nX63ie01oy6tDhoKNObWvJKNvHMCCKdNEpIiIyn2brivTW3CUWDh5qcOvtFawkYOKC9u2aSywcOhxww948u3ZmKBRmE7xERJbjOA5hmA4MffTvVzcw9Hcfq/G2Gz3CkI6XbJblKYYmIgJEPvbT97Xfds7rVcWoz+I4plwuY1kWWSskM++zP+NCEAdUq3VV7RbZYJZpUa7DiVLMgYOdFzkAePBgQKkUk82Z5F114kVERAad2csHy2QyvPKVrwTgmWee4VOf+lQvH142kdklo2gtGbVSgHn+klFJkqhyl4jIOhiGgWmYGIYqOIyi5mxdw4gYL0CxCPmZ2brnbbOZnLA59TSTYhHGC2AYEeVyWcvDiaySZaXLI/jzllhYTnOJhWPHQ/zqbBsiIksxzTQ8VK8nPPNMzBfuW93A0Oe/EHDiREy9rmvoblEMTUREBl0URfi+T61eo96o02g0qDfqlEolfN9XYpesieKJnWv+jaIQHjkSsNpDLorg4SMBkUJ1IiIiQ6GnyV0A1113HSeffDIA+/fv54knnuj1Lsgm4fs+lpXgecwsGVXg0l0O868JLAt2v8Th5v0Fdu3MtJaMUlUREZHVsywL13XJZXNkM1kymQzZTJZisYjrukouGDHN2brpkm8BGQeyWchl0+95F+I4mLONPltFViubza5riYUwSAO22Wx2Y3dURIZas48WhvDQIwGrzcUOQ/jSw6u/nyxPMTQRERkWSZIQJ7EmS8uaKJ64NgbpYFeSgO+v7djz/QQdtiIiIsOhp8syAmzdupUPfOAD/PZv/zY/+tGPeM1rXsO73vUuLr744l7vioy4dS0ZNVUlpx6tiEjHTNNsBVuieoVGAEkMCWAAgQ+5vIPnOa2ZnRuS6GPnqW3b1/12ZVlRFOHXfeJ6DcMwMDBISKiWSlouQ2SdHMeh4muJBRHZWM2B2CSBqr+2Nqp+2veT7lEMTUQ2mirjyLpp6UxZh4GJJw6pZKb3bRjgums7n7uusaAggoiIyEZoJiXL2vU8uevw4cMA/OEf/iHvfve7+cEPfsBv/uZvcuGFF/Lyl7+cc889l/Hx8daSAJ3auXPnRuyuDLnmklGu6zJesIgyEM8sGdW6QDjNJJdPK3hFUUS57BOrDq2ISMds28Z1XaLIYGoawiqYlaQtkTa7Jaa4lZlEWgvP81Sif0QlSdIKLsnS5ibBiSyleU203iUWrrwi22pPgXARWUzz3GAYkPfSAZ7VzHcyDPA8DQx1m2JoIrIRLMsiOzaGbbcPDRTHxwksl3q9rmt1Edlw64knhioXC8xO0LBs2LHdmRnj6vz+lgUXbnewej5SLCIim0UmkyFnFhbELbaMjxO749RqNRqNRp/2bvj0/CP7N3/zN9tmBBmGQZIkPPzwwzz88MNratMwDL72ta91axdlxDSXjLIsi6wVkplXtCDjQhAHVKsKXIiIrFZzhl0YGpTLcOx4yL13l5ms1doGBD/+4RI7LjK4ek+OyQkbzzNwXZdKpdK/nRfpMcuyyGZcMtlc2+2ZYpEgyWgQRRZoXjd1a4kFVWYQkaU0k7tsGy7cYTOWA7/a+f3Hcun9bK2Y01WKoYlIN7VVyKn4aQJAMlshp+pDrqgKOSKy8dYbTyyXyzo/zYjiiFwWthRNLt3lcP8DnVf8vmyXQ7FokstCEARks9kN3FMREdlMbNsmn89jGAZRySCZ+dhuXnv4FciNpf2BsbExKpWKkrc7sLqpfV00d+312UGLZM1fIitpBiVq9Rr1Rp1Go0G9UadUKql6jIjIGjVn2E2X4cChBvtunObAwWBBpYcogvsfCNh34zQHDzcolyGKDMbGxvqz4yI9ZJomnufheR6m6dAIoF6HWj39XvHBNJ052/Stiy4Dpnmd060lFnTdJCLLCYKAXM5gS9HkZ38m03EVLsOAn/3ZTDowlFMS6UZQDE1E1su2bTzPI0kspqahNAVBAM+ciHn6JzHPnIh58smYUgmmpiFJ0go586t7iYh0w3rjia7r9mfHB1AURlhWWt3s6j05HGfl+wBkHLhqTw7bSSt4qWqKiIh0SzabxfM8osigNJVwYir9TK/WwK8mVGvw5JMxJ04klKYSosjA8zwlGXegLyNHzUCSgkvSL0mSECex3nciIutgWRaWZeFX4fjxkFtvrxCsMDksCOCW2yocOx7iV9M2+s0wjNaXSLctGEQpQaWScOx4yDeOhhw7HvLEExpEkcU1ZyLPXWJhNeYvsaCZzSKynFqthmWB48Cv/LscJ21ZeZlFw4CtJxn8ytXpQNIAdO1GjmJosqHCCrmjN7d9Eaq68qiZWyFnehqOHg35qw9UeOwbId//YcyPHo/5/g9jrv+jKW65vczRoyHT0xCGaQKFJp+ISDd1K544CDHFQRAnMVEU4Y7B5ITNDXvzKyZ4OQ5cvzfP5ISNO5YWRlDxAxER6QbbthkbG6PRgKmphG98I+J9f1XhyadiTpRipqYSTpRifv+6Kd75/5T5xjcipqYSGg0YW2TpeGnX87/Om970pl4/pIiIiGyAbDZLFEEYwB131VYMxDQFAdx5V43r3+IRRdCPOLFlWWQX6SgWx8cJLFfL40lXrHeZgWBm6SXZ3IIgIJd1urLEgojIcpqDOq5rMTlhse+P87z7v1RwFvkoMgzIZGC8YPBHf5hncsLCdQ2iKFIgrosUQxORbphbIefgoQa33l4hbwX80ivat4tnKuQcOhxww948u3ZmKBRml0ATEemGbsUTs9ksvu9v7M4OCd/38bYU8DyDXTsz3Lzf5N67Gxg12uJPlgW7L3G4qhV/AstKKJf1d9zMDMPAwCBBMUgRWb98Pk8YwnQ54cEDAW+/qczJ2YDf+Q/t24UhfOrTAZ//QsA73u5x2aUO4+OqzrkSJXeJyFBTx3PAhRVyx9/bdlNt4lqw833aIekmx3Go+HCiFHPg4OqSBh48GFAqxeRyZsflwruhmWxjWRZRxSeKgGR2ne+qD7mig+c5reV8VelG1mqxQRQrCZi4oH27aLFBlDEDx3FUFl+o1+t4ntNaYuHQ4aCj4Pf8JRaq1frG76yIDL1KpUKhUKBQMNi10+G/vKvAp+/NpMn4c/pMW7YYXHxBZmZgyKJQMFoDQ+Pj431+FqNDMTQRWa9mdZup6XkVcpYpeNOskHPzfpNt22zGC2kbmgAlIt3QjXhiNmeSd3sYUBxwcRzj+z6u61IoGGzbZnPdGz3Mx3I8/nhEEIJjw+XXFBnf6mE74I6liV3N2KdWNNhcLMsim3HJZHNtt2eKRYIko4nPIrImmUwGwzCo+AnHjkW8/aYyjQawzGqLjQa87aYy7/+Lcc47z6I4rs+j5aimsogMHcuycF2XXDZHNpMlk8mQzWQpFoutpA0R2VjNZRmiEB45ErDaa70ogoePBIThBuzcEhYsjzeVBq2fORHz9E9injkR8+STWh5P1iDyMavfbfuykvq6lxkwDRPTUHd9s2tV0tESCyLSA3EcU6lUsKyY8XGD87ZZ/PbrXU452WR83GS8YDA+bvLuPytw/VvynLfNYnzcwLLS+ykpXkRksKy3Qk4Y0KqQIyKyXt2KJ0Zhe3sCYRhSLpcxjIjxAhSLkM8bTE7YnLfNZnLC5tTTTIpFGC+AYUSUy2XCXgZnpe9M08TzPDzPwzQdGgHU61Crp98rPpimM2cbHWMi0rlcLte69vjo31fpdN56owF/97Fq69pDlqbRShEZGm0Vd+oVGgEk8ezs8cCHXF4Vd0R6oTmbK0nA99dWOc/3e1dzb7Hl8T55T4VXFcO2fbjpo1Ocv91bsDxeuVzW+URWJZvJrG+ZgTcZxAlYtkUc6L232fm+PxNY0xILIrLxmgND6cx/izhJl9Eey0F65QWnnGKS22JgmglRFFIua8a/iMggUoUcERkkXYsnJu3tSSqOY8rlclqVyQrJzDt1Z1wI4oBqVVWZNiPbtlurDExNQ1gFs5K0VXfLbokpbmWmuls68dn3fSUBikhHTNOkUkk4cSLmc59f3bXHZz8X8KbfS1f78Tx9vi9FyV0iMhTU8RQZLMlMFMUwwHXX1tFyXYNeddEWWx4vbwX80ivat4sXWx6vMJvgJdIpx3Go1Nc+iDL1WptCCBnHImB195fR040lFkREVqNtYCgKsOZN2HZdCKIGvq+BIRGRQdWtCjlXXpFttad+pYisR9fiiUZ7e9IuiiL8uk9cr2EYBgYGCQnVUgnsfL93T/pgsYnP995dZrJWa5s0+PEPl9hxkaGJzyKyas0VcMIQHno47Hiye1MQwJceCvk3P5fZgL0bHUruEpGBp46nyOBpHlOWDTu2O1jW6sqlWhZcuN2hFyseWpaFZaVLMbYtj7fMCq7N5fFu3m+ybZvNeCFtQ4OX0olm2uJ6BlGOPBpw5tkz7RmGApbSVklnvGARZSCeWWKhVcX0NJNcnplzctSqpCMislZRFOHXqthxzNy0/NL0FEQn9XHPRERkJaqQIyKDplvxRMtub28zmpu0tZwkSVbcRkbfYhOfrSRg4oL27SJNfBaRNZp77VHx1/b5XPFjfWKtQIvlisjAm9vxPHCowb4bpzlwMGD+OHez47nvxmkOHm5QLkMUpR1PEem+IAjIZWFL0eTSXatbouGyXQ7Fokk2u0E7N0c2m13X8njNdb6zvdhZGSnrGUSpVmdDb72rcSeDrllJJ01cD8g4kM1CLpt+z7sQx8GcbTZvoFtEui+Z809ERAafKuSIyCDqRjwxl03b2Wwsy8J1XXLZHNlMlkwmQzaTpVgs4roulrXMTFbZtJoTn/3qvInPy2hOfD52PMSvzrYhIrKUudceeXdtKUh519RIyAqU3CUiA00dT5HBVa/Xsax0KdSr9+RwOozHZBy4ak8O20ln3G00x3GorWN5vFIpplZP25HNyTAMTMNc9Uz19QyijI3NpnRpEF3mi6II3/ep1WvUG3UajQb1Rp1SqYTv+6oyKCIiIiKLVshZDVXIkX5b67W4DLZuxRPr9frG7ugAMU0Tz/PwPA/TdGgEUK9DrZ5+r/hgms6cbTT0K7M08blHwgq5b9wMX/6/4cv/d/r/sNLnnRLpnTAMAbBtePGFdsef702OAxe92O7Jaj/DrKt/nle84hVtPxuGwac+9allt+mGxR5HREbDejue17/Fa3U8fd/f2J0V2WSiKCKKItwxi8kJmxv25rnltgrL5aE4Dly/N8/khI07lraxkQGHZtvrWR7v4SMBV16RbbWngHbvdVpqvpssyyKbcclkc223Z4pFgiRDvV5fMoEmIcFgfcsMbH+RgzE1055myMsytMSCiMhwUgxNZJMLK+SOvw9y6fVGrlajOvEmsPNdfZi0Qo7TqpBz/wOdT3ja7BVypD/Wcy0uw6Fb8cTN8j6wbbu1ssnUNIRVMCsJjz8eEYTg2JDdElPcmibMuWMWnufhT1X7vesyIBzHoeKvb+JzNmeSdzXxWUSWF8cxuZzJli0ml7/c4VOf7vyc8zOXz1x75JTUv5yuJnf94Ac/wDCMOWXXFv7x52/TDZq5ITK61PEUGWy+78/MCjPYtTPDzftN7r27gVGjbelUy4LdlzhctSfH5ISN54FlJVQq1Q2tiDV3ne+1Lo/n+0nruajP0Tv9CuiaptkqZR/VKzQCSOI0xmgAgQ+5vIPnOa3qSc10v7nLJwZBQG6cNQ+ijI8b2D5E8eYIVoqIiGw2iqGJSC/U63U8z2lVyDl0OOho4uT8CjnV6uapkCP9saZr8QGZfKfP1tVbbzyxXN4ck7ibx0UYGpTLcOx4yL13l5ms1dr+Th//cIkdFxlc3fo7GbiuS9DlfqQMH018FpFeqtVquK6L7cB/+LUxPv+FgEZj5ftls/CaXx3r2Wo/w2xDCpt1EnjqVodXHROR0aWOp8jgi+MY3/dxXZdCwWDbNpvr3uhhPpZrm0F2+TVFxrd6MzPI0kBMLwJxc9f5XuvyeK5r0Oy2qN+x8foZ0F3LbMhCoUAYuQsq0DmOg2Eb2E6yxkGUOqYBjUDJXSIiIqNMMTQR2UhLVshZxmaukCP9sebKRH1ckt6yLLJjY9jz1g4qjo8TWK4qjK1g0OOJg6J5XEyX4eChBrfeXsFKAiYuaN8uiuD+BwIOHQ64YW+eXTszFMYMHMeh0cmouowsTXwWkV5qNBqMjY2Rdw3OnbR4x9s93nZTedn7ZDJw09s8zp20yLtpfETnmqV1NbnrzDPP7Mo2IiKgjqfIsAjDkHK5jOu6jBcsogzEeYPJCXs2Iec0k1yemeXpIsrlNBCz0cdlM9iznuXxLtzuYNnt7cnGWE9At7mm+1qtdTZkoWDgOHa6TTKbhFbxIe9B3k2PhT/Ym+fPV7XMQJ04iYkTvedERERGkWJoItIri1XI+eQ9JzBovzwxLdj9ks1bIUf6Y72ViSqV5ZMVN2p/LcsiqvhpjGlOLKDqQ644mBXGBs164ombgWVaWJbF1DQcPx5y6+0VgoBWjHIxQQC33Fbh5v0m2yagaJiYhqnY0iamic8i0muVSqV17XHZpQ7v/4txPnGHs+Daw7bh5650eM2vjnHupIXnGdg2VCrptYssrqvJXZ/5zGe6so2ICKjjKTJM4jimXC6nMxetkMy8lRYzLgRxQLXa+5mLQRCQyzprXh6vWDTJZdN2ZOOsN6BbLpfXFeBbzWzIBx4I+OIXQ65/S55LdjoUjLRTXa2lCcWGAU89FRNmE8bHDbyCwSWrXWaARO85kV4KK+SOvw9y6VKwuVqN6sSbwM73ecdEZFQphiYivbJYhZyJN+TJP2RTLsdEMVgm3PbucQqnbt4KOdIf66pMVDAYGxvr2b4umJBWhnxA23E0/WTMON2fkDaqBjme2G/ZTIYogjCAO+6qdVQNHtIErzvvqnH9mwziBCzbIg50Ht+sNPFZRHotDEOq1SpjY2OMjxucd57F5O/lKR40aQQQJwmmYfBX7x3HOz299si7aWJXtVpVn2kFG7Iso4hIN6jjOQIiH/vp+9pvO+f1GigdJF1+jaIowq/7xPUahmFgYJCQUC2V+va61+t1PM/Bdljj8njp+aRarW/8zm5i6w3oNhO81sKyOp8NaZBWgmwE8Oe3Vfh/3llg8nQ4KYFaDRpBmrW1761TTL6wzGt/Y4zzttnphcxqlhmY8rGVlCwiIiIiIl2woEKOCYYDJ20xWxVycqea5Iqbs0KO9MdqrsWb2ioTbbMZL1g92dfFJqR98p4KryqGbVUobvroFOdv97o+IW3UDWI8sd8cx6FShxOlmAMHVzf578GDAVOvtSmEkHEsAjR5cDPTxGcR6bXm8tT5fJ7iuEGUpFWCxyxIMDCAU04xyW0xsKy0OEu5XCEMQ63CtQKz3zsgIrKctONJq+O5Gup4ivRXkiTESdz3qnlRFBFFEe4YTE7Y3LA3j7PC6aR9ebzZNmRjNAO6frU9oLucZkD32PEQvzrbxlpks9mOZ0MahkFCWnmrUoG//WiVOAYSGMvNXnjEM0lob3rzFA882ABgfNxgyxaD/MwyA+dts5mcsDn1NJNiEcYLYBgR5XJZM1RERERERKSrmhVy0iSTAMtKk2hsO/2edyGOgznbKBFFNtZqrsXnalYmCoPVTQRej7kT0g4carDvxmkOfzFgfsSrGQvYd+M0Bw83KJchitIEL+nMoMQTu8kwDEzDXHHA2pjzDyAK4ZEjwarf51EERx4NaK7GqIHyza1er2NZtCY+rxQXb5o/8ble18RnEelcGIaUSiV838cwEgwTDBPMme/5PBhGWmG4VCppPKRDSu4SkYGmjqeIdIPv+1hWgufBrp0Zbt5fYOfFDvNDG6YFu1/icPP+Art2ZtLl8WaWopCN062AbjabXdPjO45DbRWzIZMkDbBVKgmf/0LAdCmeeR4wP14WBPB//2mZR44ElCsJlpV+RmWzkMum3zWIIiIiIjJcOh2kleGw2V7PKIrwZ5Y8aU5kiqKI0tQUvu9rYpP0zGqvxed68GBAqRTTi5BvvyekyfoZhtH66hXLsnBdl1w2RzaTJZPJkM1kKRaLuK7bej9YloWbG8M0TQzTmP0yIAGq/tqS3KrVpJV8aCyIgMpmoonPItJPjUaDqfI0cRyTxEnr68TUFFNTUzQajX7v4lDp+bKMhw8fbv1/+/btZDKZNbXTaDQ4cuRI6+edO3eue99EZPDMdjytVsfzltsqLJgWNYc6niIyXxynMwBc16VQMNi2zWbiDXnyD9mUyzFRDJYJt717nMKp85bH87UUxUZzHIeKv76AbjZnkndXV+ER0qUVoNPZkLPBsGotIUkgDOHIVwKeM5NXZpkQzmujmYR2/Vs8claCEUdpiWEtMyAiIqswd4ka2RwUQxsslmWRzbhksrm22zPFIkGSaS09IcNBr2dqlCrjyHBZ3bX4QlEEDx8JuPKKtU3yWo31Tki7/i1ea0KaJg/2jmVZZMfGsO32YdDi+DiB5W7Yeb65hKdlWUT1Co0AkpjWEriBD7m8g+fNxrCiktOqstXcjiSdQOi6JqZhkCSruwoYG5tN6dL1g/i+j+d5eJ4xM/HZ5N67Gxi1dBJrk2XB7kscrmotLZvGx8vlPp67wgq54+9tu6k2ca1iqSJDSJ9H69fz5K7f/M3fbGXHf/rTn+bMM89cUztPPvlkqy3DMPja177Wzd0UkQEy1B1PkT7SAGC7MAwpl8u4rst4wSIywXDgpC1mK3CSO9UkV0zPJ1EUUS4rsWujdTuga5rmql6zZr80ScBfYTakMbNdHNMWzK35CczEkw3TgGhhO60kNBs80yJIAh2bIiKyIiUfbG6KoQ2G1QzSRlGUTg7p907Lktb0euqaUKTrVnMtvhTf781VteM4VNZZYWytE9Jk9drO8xU/jTMls+f5qg+54sac523bbi3hOTUNYRXMSsLjj0cEITg2ZLfEFLemE9Rd18A0oeJDPoZGI51IaBrgxOmSudu325gWxJHRPhiyDMuC7S9yMKbSn5XIK4tNfL7ujR7mY7m29+fl1xQZ36qJzyIig6rnyV2QdiS6Vf5UnRKR0aeOp0jnNAC4vDiOKZfL6d8pCcjMq4ifdyGIA6rVzf136qWuBXST9vY61exLprMhV75vQjpbd24XNDfnfkm8+HNoJaG9fHY/1Y8VEZGlKPlAmhRD66/VDNKmsQgLz/PwG0/3e9dlEWt+PX2fMAz7vfsiI2W11+KLcd2NX2yu+RncrwlpsjoLzvNlyAe0Ve2ffjJmnO6f55v99zA0KJfh2PGQe+8uM1mrtcWQ/ueHS+y4yJyZoG4xNgZRDKVSQhDObvi1zze4+HLYUjTZdYnDAw8GMxN5V3bZLofxcQPbhyhWfFNSCyY+ZyDOG0xO2LPXmaeZ5PKa+CwiMqj6ktzVy3WtRWQ0qOMpsjwNAK5OFEX49SpmGLb1S6anpiC78SX9ZVbXArpGe3udah4Hlg07tjsznyHL32fuY9g2bH+hA0fTn6NlDqu2JDRV1RMRkSUo+UDmUgytfzodpP34h0vsuMjg6lYVcQPXHSNRMv9AWd/r6VIulzf1NbRsThtZEX4t1+JzWRZcuN3B3uARrmYqTb8mpEnnFjvPf/KeCq8qhm3v4Js+OsX5272un+eb/ffpMhw81ODW2yvkrRJXveL+tu3u+tfXc/+DHgcPB+y9Ls8llzgYCYwXDH7yzOyefuZzDba/JH3v7Xl1jkOHA8Jw5fdQxoGr9uSwnTqmAY1AyV3L2mRL/rVPfC6Reeazbb/PZH6PIM5o4rPIiNJqP8PP7MeDKrAhImvR7HimF1oBGSfNwchl0+95F+I4mLONgm6yOdi2jed5JInF1DSUSlCpJBw7HvKNoyHHjoc88URMqQRT05Ak6QCgvdERsCGRJEnrS3pvsYDuajQDupbd3t5qBEFALpvOhrx018rLJMwNpL1st0OhmHap6/XlK+S3JaHpAkpERBYxd1BqehqOHg15z1+Uuecfahw8HPDQwwEHDwe86c0lbrm9zNGjIdPTEIbpoFRzuWMZHeqj9s/cQdoDhxrsu3GaAweDBf29KIL7HwjYd+M0Bw83KJchigwdjwNmva+n67r92XGRHrMsC9d1yWVzZDNZMpkM2UyWYrHYmlTYLau9Fp/rsl0OxaK54fPzmtfu/ZqQJp1b7Dx/+IvBguhLvAHnecuysCwLvwrHj4fcenuFYJkVPJMEalV4201lvvnNdHKGbUHGmX2PfeMbId/9XgQGTExYXP/m/IrJjI4D1+/NMzlh445BnMTEicZIZKEoivCrVcIwJIqi1ldpagrf95XYJTJCetm3k403tFGGWq3W+n8ul1tmSxEZNc2qQ7V6jXqjTqPRoN6oUyqVNl3H0zCM1pdsTuseADSGtisgI6QbAd1cNm1nLer1OpaVVj+5ek8OZ5ldMEi3MwzIZOA1v5prBWmrtaWDtPOT0BTQFRGRxSj5QDaCYmirt9pBWoAggFtuq3DseIhfRdfqA6Qbr2ezDZFRZZomnufheR6m6dAI0glMtXr6veKDaTpztll/PGk11+JzzVYmYtUTxFaree3ezwlpsrJ+n+ez2SxRBGEAd9xVW/GxIY0hNRrwdx+brSA5lmvvN7znfRXq9QTDgEt2Oty8v8CuSxxMs307y4LdL5n5/c4MngeWlaw5TiabiyY+i4ymfvTtZOMN7av07W9/u/V/z/P6tyMi0ldJkhAn8abqeFqWhTs2hm3brYtOy7Iojo8ry3oTWv8A4Fh/dlxkjm4FdOv1+poevzk7zR2DyQmbG/bmF92HhDSpyzTBdeE/35jnuc9NI7RhBI1g6c+iuUloUbx5kpBFRKRz/R6UktGlGNrqrWWQFtJj8s67aoRhWpVDAfLBsO7XM0ivqbMbXSKoDzRpUKB/FeE7vRafa35lol5M8u33hDRZWb/P847jUKvDiVLMgYNLP7hB2j+IY1r7+IX7AqZL8czzgLmn42PHI971X8qtBK9tz7W49o15XvXKLLt2Orz4QoddOx3+4r8Wuf4tHtu22RQKYNsJvu9vqjETERGZpdV+RtdQvkJRFPH3f//3QHoB+pznPKe/OyQi0gPNCk2WZRFVfKIISGaSDYCqD7mig+c5repmmg022pqDd1PT7QOA1jKf7s0BwJv3m2zbZjPuWMSGoYt96avZgK7VCujecluF5VYuXCygu56gru/7M7NUDHbtzHDzfpN7725g1OYutZiksyF3Ouz55RzPeY6FYUDYSJieXnpn5yehBaGSu0RENpSdp7ZtX7/3YtXWOyh1/Vu81qCU7/td3z8DDfwPI8XQ1sZxHCr+yoO0i3nwYMD0r8dsicGydNwMgvW+nqVSTDZnkndXl9QxqCzLIjszaXCu4vg4geVSr9c3VVX8zW5uRfhyGY4dD7n37jKTtVrbxMGPf7jEjosMrt6TY3LCxvPSiqFlf31JrJ1di89UJrrE4arW46eViSqVKk6nM8TWqF6v443NTkg7dDjoqJ82PxZQra5tQpqsbKnzfC10eeRHL23btha2V7pd73m+mcgdhfDIkYBOTp9hMPv+DkM48pWA58zklVlmOoGw6ciXQ976tmmue1Oe859vk88aJHmDyQm7NS4QnGaSy6fvsyiKKJd94jAczgFgERFZl3X37cpljS0PsA35bH/f+97X0Xb//b//dwqFQsftBkHAE088wcGDB/nRj37Uuv3FL37xqvdRRGSY2LbdqtA0NQ1hGfIBlMsxUZxe9E0/GTNOGmhwx9Isa9/3CcOw37svG6QrA4AmWKapwK303XoDuuXy+gax4zjG931c16VQMNi2zea6N3qYj+V4/PGIIATHhsvfMM74SXlsJ00wO3Ei4QN/XeH3zl08uWuxJLQ40cWRiIgsNIjJB5Zlkc2NLag+VCyME2SVANANiqENnrUM0s4VRfDoVwPOzqc/G5pM01fdeD0fPhJw5RXZVnvDOtihSYOymLkV4Q8eanDr7RWsJGDigvbtmhXhDx0OuGFvnl07MxQK668I3/G1+DVFxrd6M3HPNA7Qq/fokhPSltHtCWmytH6f55uVD5MEfL+zz/v5/YKan8BMcpdhGhC1//7Y8Yi33DDFn/xRniteBpkMbRMiMy4EcUC1qr65iMhmt/6+XZrgtRE0aXD9Niy5a6VSzkmS8JGPfGRN7SdJ0mrfsixe/epXr6kdEZFhsFiW9SfvqfCqYthW1Oamj05x/nZPWdabSFcGAIvgafkFGQCDENANw5ByuYzruowXLKIMxPNmQ4anmuQ8A8tKZ1c+80yEO5Zelsw9J5sW7H7JIklo0z6Zde+piIiMmn4PSi22P60EgJJDMy+5+XlY8SE3pgSAblAMbfCsZZB2vmotIcl3c69krbrxevp+0ppwMqzLF2rSoCxmUCrCd3Itvmhlojju2TG52IS0T95zovNYwDonpMnS+n2eb773DQNct7P7po8xu6+5OfdL4qWfQ8VPqFYTMgk0gsZMgm5CtVQCWx0PEZHNrit9u0LaRreShTVpsLuGsirn3Blv1157Leeee26f90hEZOMslmWdtwJ+6RXt28V9yLKW/unaAOBL0p81m1wGwXoCut0SxzHlcjm96LBCMvOKn2RcCOMAw7BIEoOzzrL47dfnKR4yaTTSYKBhwLveOY53en9mFYuIyPDp96DUXAsSAKahGNP2OffUUzEFe2ECgAJyg0cxtNVbyyDtfGM5zUkeFN14PV3XoHlaHcbrZk0alKUMUkX4Tq7F+1mZaLEJaRNvyJN/yG5Lkrzt3eMUTlUsoJf6fZ5vvraWDTu2OzPxquXvYzvp/iYJ2DZsf6EDR9PfRUu8VSwLLtzuYNlh2+OKiIg0daVvF6Xt+P76EtM1aXBjbFhyVycdoLVeDDuOw4tf/GL+43/8j/zMz/zMmtoQERkGS2VZYy19n43OspbB0LUBwG7ulEgXDEpAN4oi/LpPXK9hGAYGRttsyObFyXjBagVxx3JG6+Lk5FNMcsWNS0ITEZHR0u9BqabFEgA+fW+F3zozbus37nvrFJMvLC9IAKhUll+iSBanGNpgWcsg7VyWBS96gQPfSX8exmSgUdKN1zMdTG9vb5ho0qAsZRArwq90Ld5PCyakmWA4cNIWsxULyJ2qWECvDcJ5PggCclmHLUWTS3c53P/A4sdTQtrfN8106c5GA16226FQTCfx1uuwVLfhsl0OxaJJLgtRrDi/iIgs1JW+Xc4k7zor32EZmjS4cTYkuWupUvFJkvC6170OSAelb7nlFk455ZSO2jQMg0wmQ6FQ4Oyzz8Zx1vemEhEZBoOUZS2DpWsDgN3cKZEuGqSAbpIkzE+FbEtCiwPsmarCzWMq3+dZxSIiMlwGYVAKFk8A2JoJeN2Z8/Z3iQSAsbGxNT3uZqYY2mDqdJB2MZftciiMB5imErsGxXpfz+ZgetBpUGaAaNKgLGUYKsIvdi3eb22xgCQgM+9YUiygP/p9nq/X63ieg+3A1XtyHDocrBjHH8sZGEbCa34115qgUa0t/n7POHDVnhy2k/b7g1DvLRERade1vt0V2VZ7a4ktadLgxtqQ5K5LLrlk2d83q43s2LGDM888c9ltRUQ2s0HJspbB0+0BQA06yCAbxIBuUxRF+LUqdhwzN12yND0F0Ul93DORARFWyB1/b9tNtYlr+z7rXmQQ9XtQaskEgMxy+7wwAUBWRzG0wbSWQVqYM/hq+xgGREutrSQ9te7Xc2YwvVqtd/yY61ket5s0aVCWoorw65NOSKtihmHb8T49NQXZbB/3bHPqx3l+riiKiKIId8xicsLmhr15brlt6cFpw4DcGPzJH3s897k2VCGMoBEsPKIcB67fm2dywsYdSx8rTjroX0Q+9tP3td92zut1LS4iMqK61rdL2ttbLU0a3FhmPx40SRINIouIrKBbWdZR2N6ejI50AJDWAOBqzB0A3LSfyZZLePLuti8st997JUMsmfNPRERkter1OpZFa1Cq02JL8wel6vW1DUqtNwEgDFY32UA6oxhaf8wO0tIapF3pmJw/+KrXbnB04/VstrEcy7Jwx8awbbuVMGtZFsXxcVzXxbJ6nwDrOA61+vomDdbqqALgCFJF+O5pnu91zu+fXp3nl+P7PpaV4Hmwa2eGm/cX2Hmxs+AYMc2E3S9xuHl/gcsudfDyYBowPd3+/jEtWtvt2pnB88CyEiXainSRYRiYhjkwSfki69G1vp3R3t5qNK9//Gr7pMGsVcXLlNq+slYVmJ00eOx4iF+lL9dMw2RDKnct5+tf/3qvH1JEZCgNSpa1DK5uzUpb67I9IiLSR5qFKzJylpzxv8ylQDcHpbpRNTiXMztOSpOVKYbWX77v43kenmfMDNKa3Ht3A6MGc+PclgW7L3G4qrWcBFhhouusAbOu19NKKJeXHkxvLj1iWRZRxU8TXZP09G0AVR9yRQfPc9JqP75PL94dg7I0iwwmVYSXUbOR5/lOxHGM7/u4rkuhYLBtm83EG/LkH7Ipl2OiGCwTbn33OIVT0+Qz1zUwTWiYkC8aNBrpvhoGvOud43ine9gOuGOziV06D4usj2VZZDMumWyu7fZMsUiQZKjXtayuDKdu9+3W8nnTrarBqlWytJ4nd4mISGcGIctaBltXBgDrUXuEQ0RERET6pl+DUt1OABAZBYsN0l73Rg/zsRyPPx4RhODYcPk1Rca3zht8naqS03XWQFnX67nMYLpt262lR6amISxDPqBtIH/6yZhxmGnTwvM8/Knqhj/nQZ80aBgGBoYqH/dRt5aEVsxRBsFGnedXIwxDyuUyrusyXrCITDAcOGmL2Ur4zZ1qkium/flmEDfvpp8XYzmjtd3Jp8xuF0UR5bISu0TWoy0Zv16hEUASzybjBz7k8vOS8XXMyZDpVt8u6DQrax5NGtx4Su4SERlQg5BlLYNv3QOAfhUtRCgiIsNIA4Iyivo1KNW1BIA13VNkcC0YpM1AnDeYnLBnB4JOM8nl5w2+RmG/d10WsebXc4lza3OQMAwNymU4djzkk/dUeFUxbDsf3vTRKc7f7nF163rcSO+3wRXWB3HSoKplDBZVhJdR0+3z/FrEcUy5XE7Pd0lAZt7qUnkXgjigWk3Pd5ZlkY0D7JkqJcYS24nI2i1Ixq+CWUnarrGzW2KKW+cl4/s+Yah+vQyPbvXtqtX6qh9bkwZ7Y+CTu+I45o477uBTn/oU3//+98lkMkxOTnLVVVfx0pe+tN+7JyKyofqdZS2Db90DgIkCcCIiMjw0ICibQT8GpbqWALDmPZBuUAxtY7QN0lohmXmziDMafB0q3Xw9m4OE02U4eKjBrbdXyFsBv/SKeY8Zwf0PBBw6HHDD3jy7dmYojBnYzsaG5gdp0uBmqZYxbJMPVBFeRtGgfG5HUYRfr2KGYVvlw+mpKchm27erVbHjmLm96dL0FEQnbdj+iWwWiyXj33t3mclare3j6+MfLrHjImNBMn65XB7KPolsTl3p2820sVqaNNgbPU/uOnz4MP/zf/5PIA3M33TTTWQymUW3PXHiBG94wxv48pe/DMwGG//1X/+Vf/zHf+SXf/mX+bM/+7NWJqCIyKjpZ5a1DI9BmJUmMpIiH/vp+9pvO+f1YOf7sz8im9hmGRAUaer1oFS3EgDsgZ9COFwUQxss6SCtT1yvtSVwVEsl9Q+H0HpfT8uysCyLqWk4fjzk1tsrabzGWvo+QQC33Fbh5v0m2yagaGz88TgIkwbXVS1jCMJZwz75QBXhZVQN0ud2p5UPNaQt0n2LJeNbScDEBe3bRYsl4xdmE7xEhsW6+3Zlf02Pq0mDvdHzsNvf//3f84//+I8YhsEVV1yxZFAKYN++fRw5cgSYmfUyJ7s9SRLuvvtuXNflbW9724bvt4hIPyyZZb2MbmVZy3AZlFlpIiI9FVbIHX9v2021iWs1wDpiVD5fNrNeDkp1IwEgq+r5XaUY2uBKkkQDsCNkLa9nNpsliiAM4I67ah1NxIM0wevOu2pc/yaDOAFrg0cv+j1pcN3VMvzBTUgdlckHqggvm4E+t0U2p6WS8a1lsiPakvG32YwX0jY0piLDYt19uzX2VzVpsDd6/ud58MEHW/9/5Stfuex2n/3sZ+eUcGvveBmGQZIk/N3f/R179uzhggsuWKwZEZGht1iW9SfvOYFBeyVN04LdL+lelrUMp0GalSYiIrJeKp8vMmujB6W6lQAg3aMYmsjgchyHig8nSjEHDq6uqtWDBwOmXmszHoK1dM5mV/R70uD6q2WMrelxN9qoTT5QRXgRERlF607Gf4tHFKXt+L7G2TYVO09t275+78Wa9atvp0mDG6+nU1++973v8ZOf/ARIA0u7d+9ectu//du/BdKAlGma/OEf/iEHDx7ki1/8Im9961uxLKsVtPrQhz608TsvItInzSxr204oFGDbNpvfe0Oe551nc9aZJmecbnLWmSa3vXuc69/isW2bTaEAtr2+LGsZfkmSECdxx6W/RUREBs3cAcEDhxrsu3GaAwcD5n+0NQcE9904zcHDDcpliKI0wUtEOjObAEArAcBxIGtV8TKltq+sVQUWTwCQ7lAMTWRwNZc3jUJ45EiwqhnpkPZbjjwa0Ktwje/7WFaC5zEzabDAzoudBUueNCcN3ry/wK6dmdakwbUOZjarZfjVeUtXLqNZLePY8RC/Stv5a1DMnXwwPQ1Hj4a85y/K3PMPNQ4eDnjo4YCDhwPe9OYSt9xe5ujRkOlpCMO0bzqoy+M2K8KnkyMCMg5ks5DLpt/zLsRxMGcbxRtFRGSwOY5Drb72ZPxSKaZWT9sRGTb96NvV63Usi9akwU4PHU0a7FxPryS+/e1vA2lQ6owzzmB8fHzR7SqVCl/4whdaZeRf85rX8PrXv55isYjnefzGb/wG1113XTprNUn43Oc+R72+ttLQIiKLaZ5/BiWA1MyyNoyI8QIUx9OBlJO2mJy81eSkLSannGpSLMJ4AQwjolwuD+RsQBEREZFOdGtA0FJUQKRjiyUAXLjD7jgBoFqt9mW/R5FiaCKDa7ZKHvj+2iZTVau9WyCsX5MG11stIwzSRLhBS4Ya9ckHzSUka/Ua9UadRqNBvVGnVCrh+74SuUU2kDHnn4isTzeS8R8+EhCF7e2JDJte9u2WmjS4HE0aXJ2enol+9KMftf4/MTGx5HYPPfQQjUajVWnkta997YJtfv3Xf72VKVur1Xjssce6vLcistlYloU7NoZt262BQMuyKI6P47pu3wcG52dZW1a6drFtp981g05ERERGSbcGBLOq5y3SscUSAF73ujxjYwbZrEE2k37/07cXVDV4gymGJjK4msebYYDrrm0Afmyst0P3/Zg02K1qGYMy8RI23+SDTVkRfmYZprlf2Pl+75WMMMuycHNjmKaJYRqtr2JhMMYkRIZVN5LxfT9pJW8PUn9EZK160bfTpMGN1dPkrnK53Pp/oVBYcrsvfelLQHqifO5zn8s555yzYJt8Ps/555/f+vnYsWNd3FMR2UxM08TzPDzPwzQdoijN5g/D9HvFB9N05mzT3wz9KIrwq1XCMGxlQUdRRGlqSjPoREREZGSofL5IfyxIAPDANMCx0okljgVbT1bV4I2mGJrI4Gomslo27NjurHrpEMuC7S9y6HV4qZeTBrtdLWNQBlQ1+UBEumX+mEQSQxJDPPN90MYkRIZNN5LxXdeg2QXZVInOIuugSYMby+7lg80t+57JZJbc7pFHHmn9/9JLL11yuzPOOIMvf/nLAJw4cWLd+yfDr15f/sPViBKcefHmRiMhiZJ0DVh78Q/4JJ7Zbg0F05drt9FIFpTs7ka7QZCw1nOfaYLjdNbucn/PuYwoIROlWbiLCcNk1UGe1mMbS6+/20m7tm2TzbrUagZ+NSH2E8brCeVK+tpYJkw/GTNOukawO2aRy+WZnk6TqJrvuXo96bhzl80u/veNooROx0OMRpJe8M15TyZJsuiszzhOOg42LcZxwDQXtpwkEM/8fRd73efu51zNY2npdhMajbXvr22DZS3+N17qHNHJe3m5Y26lc89yNuIcYUQJmZglA8Vzj+XlXqPFdHKO6PTcAOnFVb2eYCwTn1jLOWJu+5nM4vsbRkkrULzSfi5mqWO5GYRZS5vLtbuac8RiMpnFA+IbeY5Y7XNf0O4itydJQmMdx9xqzhGdHh9GI4EElpp6P7fd1Xx2OiEY5tLH8txzRPNYaj7eSp9Jg9CP6Fa76znmlj1HrOPcA0sfyxvVLsna+6uwgecIY/H9Wald0zSp1xP8Chz+UqPt/Jck6ddiY3zNt34YwqEvNbji8iy2BUFgLBscMKIEJ0qIkwRzicHDjfq8H7R+xErtDts5YsP6ET08R6ymb9W9fkREtTqNZVlk6w0KM802W8+PQRAHVCo1arXZHW5+Hi15rpKOKYbWH5surrTE7wYtrgRgJgm5JR5zrefk9PN/bXGlcrmBaTqMjRnsvNjmwQPpE0kSaL3MS5wKd+20yY0ZMJUQzrQfRknH/dj1n+tDqg2fkxphW4eqXCph5BYmHa2lP2hZ6fFUq0Glsvibae57t9m/m2tqKqbeSN8zcUzr79rPuFIc20yXE554MubBA7NLMS62//Nve+BAwOtLMdmcSd5tn3wwaP1BxZXa218urrSa5z6f4kqpzRhXsmyrbUwimU44OYJGkLSudZ96KqZgp2MSlmniOPl0Ynejw7hS87GNxa+dW/dTXElxpaYRiytBRCaT9rV++nwb06T1d+skrmRZ8ILzbcIooV6HanX5P7riSp23O2znCMWVUqvpR9TrAdXqNK7rks1Y2JkE00jzBJrDKFtPNskVwTASarWoldhlGIbiSsvoaXJXLjd7CT53BuJcURRx5MiR1s8XX3zxku3NneFSq9W6sIcy7D75f5b/vQ28cF6P/ivfhBB40QthcomVDp4pwWc+C/XFf72s550Hz3/e4r+77wGYnl5Do8Bzfgq2X7D47w4ehqefXlu7Z54BO5c47B45Aj+cXRli2b/nXDawMw/nnL14u1/9Gnz7O6vbz+ZjZzIw8ZzFt/nmt+CxbyzdhmEY5LI2URxQr8NTT0Uc/VqZ331+RMJsAOOmj05x/naPq/fkmJyw+fGPEx79ik29EZPLpe+Kqt95l/eXX7X47Y//GL74pc7ayAI/Oy/4aASQWSTS+ZOfwP0Pdrhzi/jZn0ln5M/XaMy+bou97kvt5798Nj2WXnoZnHLK4u2udCwv5+KL4NlnLv67pdrt5L283DniM59lzYHDjThH2MDuk+BZz1r893PPEcu9Rovp5BzR6bkBwCBhzK1z6ikmF+5YvN21nCOaCgW44mcW/92xY5CdV7Rgqf2cL5OBX/j5xX9XKsETT66+zaZunCMW82//DSw2OXgjzxH//OnVPfe5XnoZnLJl4e1BAJ/89BobZXXniE6PDxf45Vwa4FvM3HPEaj47X2jCyVsXP1dC+zmieSxBZ59Jg9CPWI2TT4bdL1n8d08+CSdKsz+v5phb7hyxUj9iOcudI777PXj0K2trF5Y+RzSCtfdXYePOEVe8LD1G5itX0uNpKaYJ2WyDahW+/GjInBwHjBUCH81tDx8OqdcMxsbS25YL8DSPuYnnJBTHFw8erKd/Mkz9CBitc8RG9SN6eY5YTd+q+/2IiAI1rsomzF1ArFSeBsPnqaeStnNE8/Po3//KUikY0inF0Ppj08WVfnrx3w1aXAngtK3ws6ct3u5az/U28OLc2uJKplkjm02Tl049xZqprg51A+KZzvgiuQpkHLh0V4Z/+WyF7U7UOrcGIXzlaGf92O7GleZMROliXMkwYnK5BrUqmEskQcDsIGu9DvV5T/4bR2Ncs8EVdkw8Z2SxX3El0zS55x/S5/Svj4X4/uzvjIgFg2jzn5Ntp9XIrrwi22qvOflg0PqDiivNWq4/+O3jcPaJ9tuWe+5zKa4062d/ZnPFlT77OQNj3pjEd75e5saL2y9Y9711iskXlrl6T45vHI0wDLBMm7Bu8IJ5p9XF3iPNxx7LgbvYRTmKKzUprpQatbgSQCZTxTAsqlU44wyLb30r/bDuJK703HMtHjwYMjYGSRKt+DmtuFK7UTpHKK6UWn0/IgbKmKbJFrPKq2bGTuZPGvz+D2p84b45kwYVV1pWT+t4zi0j/73vfW/RbR555JG2tTR37NixZHuVSqX1/+VmMYqILCaTyRDHBrU6HDsecsdddb59PFpw4RJHcP8DAftunObg4Qa+D3FsbPolfgzDGJiy+CIiIjJaWuXzWXqG20oymdlUFJXPF1m/ZM4/2XiKoYkMtjiOieOYjAOnnGLxc1dmVlye0XHg+r15znq2jWOPdv+k+dxMC170wtUvXWmacPZZ1pKrAPRDMwaWkFY6WAvfn1slRzE1kc3IsZ0FYxLf/c7CTJO5YxLfOhbOTFgycBz140Q6FYYhpplWkXrxDrvj/ohtwYUz25tm2o6IrE0cxwRhmF4fNKscJ+mkQd/3iddTvmwT6mly1+TkJJBe3H3zm9/k6UXSMv/pn/6p9f8zzjiDZy01PQT4yU9+0vr/3KCXiMhKTNPENE0aATz9VMSnPt1YsfxlEMAtt1X4/g9CGgGbcp17y7JwXZdcNkcmk8GyLGzbJpcbI5PJbMq/iYiIiHTf3AHBs8+yllwSZinzBwRHefBUREaTYmgig6/RaGCaCdksTDzH5uo9WZ4zYS1YjdG0YPdLHG7eX2DXzgyuC6aZLLtk9CiIogjbhuK4waW7VjdBcnLCYmzMwDIZmJTibkw+cF2jtQSU+qcim5GxpjGJT/5Tg6eeilpjEkoOFenMWpPxr7wywymnWGSc2TZEZP00aXD9ejoK//znP59MJoNhGCRJwvvf//623z/11FPceeedrWowl1122bLtHT16tPX/Zz/72RuyzyIymmzbJo7TkukPPRJ2vK5xEMCnPpNedG2m/pxpmnieh+d5mKZDI0jLvIZh+hUEYBgW2WyWbDarC0wRERFZt+aA4NiYwcTE6so2NAcEbTttR0Rk2CiGJjL4kiSh0WhgmQm5LJx2msXPvCzDs55lsvUkgzNONznrTJPb3j3O9W/x2LbNplAAy04IgsbIJ/e0qmU4cPWeHJ0WwJ9fLWNQ/k7Ngd21Tj6wLLhwu4Nlt7cnIpuHYRhrGpOIInh4Zvs4BtPQBGuRTi2WjD85aTF/CMuaScb/05s8Jp5jk82myfiNta53KCKyAexePpjrulx++eX88z//MwB/+7d/S6VS4ed//ud5+umn+cAHPsD0zOKthmHwS7/0S0u2dezYMcrlcuvniYklFpqVTeXf/pvlf29EkJ+3Lu4ZPwWJxbLZ2icV4YoXQbKGirfLtbv7JbDW+MRy7e7aufbEo+UCEzu2wwUvmv15ub/nXEYE3neXbvcFP730ms5LaT32MjlEzz0XJp6z+O+KxTEqPjzxRMxH/tZvrQWezYK5Ql7SV74a8sbfdTntNBPPS/9gJ05U1x1sOv1ZK7+Hm4wGnPRo+23lJYJkW7d23u5ixsZsPC9PFBlMTUNYBbOS8KPHI5IkwbYNdrzIZnxrBtsGdwwsK4vv+0T+wv1sHktLBfUymfXtr73MJ9tS7XbyXl7umFtqzexObMQ5wojAW3zlFqD9HGFELvnv7G77/RU/5S44jps6OUd0em6A9PN+y5Yshgl+ZeHvYW3niNn2l/7d5CSMzbttqf1cjWIRxucUQ+hGm7C6c8Rillp9Z73niOWO5Z97xdqfu+OQLsu+yO29Okcsdq5drD9gVMF+aOl2554jOv7sbPic9Oh96f+bhTrOeT3Y+dY2c88RzWMJOvtMGoR+RLfaPfVUOOXk2Z9Xc8wtd45Yrh+xHuecDc8+s/vtZpz0vbaW/ips4Dliib+xl1+5XcuK8Lwxpqbhec8z+c9vLxMEkF3hKrbgwRt/f4znnmszXoByubxi0NyIIP/dtJrCUtbzdximfsRK7Q7bOWKj+hG9PEespm+1lPX0I4wy8KXFfzf/HDH380jWRzG0/lBcKTVocSUAMwGWuM5d67m++fm/lM7O9TGm2cB1XSzLIvazZA6ZJMlMfMmAsVNNclsMTDMhiiJOOdnnip+NyX8Xcrn0ydZqAWecs75rx8GLK8V4noVtG+THbG7Ym+eW2yptpbia78NsNn3ujgNvvtZl58UZCh4YdYvMwfY3eT/jSr/w8wam6VCagu98N+DBA+kyTVl74THVfE5NL73Mplg0yWUhCIK2bQetP7iquFKH181NoxRXes4EFEvtt631XD+X4kqzjzdqcSXLNrn8RRmeKNltYxKZFbrPmQz88EcRl+2yOXVrhuIPbOq12YvcxeNKM4+9zHtYcaWU4kqpUYwrpRJsO8R1XaLIwK9CVI/JfivLj38cE4Tg2HD5NUXGt3pYdsIFLwTLSvB9nzDs7INUcaXO2x22c4TiSinFlQZDT5O7AH7/93+fT3/60yRJQpIk3Hnnndx5551AOgunWe3l/PPPX3bW4Wc+85nW/08++WTOOOOMjd1xGQrZ7ApZOaHRmh3VlMkYYC9/P8Oc2W6l9ldprSW8V+Is1dvpdrud/j1Do7UkzmJs21j2omhRizx2p+2apkk2a1Cvw9f+NSSOZz9gjZnA23LiGL76ryFnnJFtveeyWWPNnZwmyzI6XvMbDOZP0FmqWpZpGq0LxdVKK3blCUODchmOHQ+59+4yk7Va2/P9+Eem2HGRydV7ckxO2HiewUkn5SlH1oL9XOlYMoy17+9KljxHzLyfDMPAwCAh6ejcsGK767Tmc0RoLNsZbTuW13heXLbdVbSZvt7p7f4S7a7pHNEB2+rec5/LNGmrjdqNNmG154jOreccsRzD6MJzX+Qib+57ptsWtrvwXLvoOSwywABjiQ+QtnY7Pj4WPvZ8c88Rc/8u6/1M6lk/oks26pjbsHPPBrWLsTH91XWfI8L19E9ibDvmpC0Wzz/P4Q+uTwcEjWTp4EgmAzfszfP88xwKBTCMCNuOsVd6T4QGtmVgLhN16d25pzuG/lqjS4btWF603S7019bVj2gs/Tjzj+WN/JzejBRD671NF1cKF7954OJKM9suZc3n5HD5c2On7abnQgPLMiAxMObdx3UNkjm7b9sGZibte9hW+gvbMtbdjx3EuFIUVRkb8/A82LUzw837Te69u4FRa9/OtuFluxyuasWVwLYTyn5toOJK0MB1M4QR/H/+3Rhfemh6ppr9wv7p3NsyDvy7q8ewnXSws1qtt207cP3B1cSVOr1u7sAwxpW69dznUlwpNWpxJcNIjyvbNBaOSazQrmHMjklc+fL0syNyjFYCluJK66O40oyRjCs1RQRBBdd1yectorpB/GOTvGuSkB6DwWkmuXx6royiCN/3saw47d91uJ+KK3Vm2M4Rw3YsK6402nqe3HX++eezd+9ebrnlltYFY2u9+plS87lcjv379y/bzic/+cnWfV784hdv7E6LyEiZPfeA76/tKsX3N8eKwM3ZDNNlOHiowa23V7CSgIkL2reLIrj/gYBDhwNu2Jtn184MhYKB686vizR4LMsim3HJZHNtt2eKRYIkQ71e13JOIrIky7LI5sYw50W+i4Vxgqyrc4jIOvm+P7M0tLFgQDCZV/Vh9yXtA4KWlVAuLzXEIyIy+BRDExl8tm23YidT0xCWE/I1qFaTVhJm6bsRhVMSbAfcMQvP8/Cnqv3e9Z6I4xjf93Fdl0LBYNs2m+ve6GE+luPxx6MF1TLSv9FstYw4GaylC6MoIooi3DGLyYnFq5HN5zhw/d48kxM27thsGyKyOSWsc0yiWWlrZoKyiHQmjmPK5XIay7VCMvOqBmZcCOKAalWxXBEZXD1P7gL4nd/5HZ71rGfx53/+5zzxxBOt25Mk4bzzzuNP//RPOf/885e8/6OPPspXvvKV1s8vf/nLN3R/RWS0zAbDly+RuhzXXao+y+iwLAvLspiahuPHQ269vUIQsGzFtCCAW26rcPN+k23bbMYdi9gwVizj3A+mabaWTYjqFRoBJDGzMzV8yOUdPM9pzdSI11orVkRGTts5pOTQHHNonkMqPuTGdA4RWa91DwjquBORIacY2nBbqhKSjIbmNcHcauefvKfCq4ph23D7TX8zxfnbvbZq567rEm6S90cYhpTLZVzXZbxgEWUgzhtMTtiLVMtIk5/K5cHtx2nygYish8E6xyRm7qrELpG1iaIIv+4T12ttK7lUSyWw8/3ePRGRZfUluQvg1a9+Na961at49NFH+eEPfwjA5OQk55133or3feKJJ3jta1/b+vmKK67YsP0UkdHTDA5ZNuzY7swEjjq/v2XBhdudjSl9O0Cy2SxRBGEAd9xVIwg6u18QwJ131bj+LR6RCZZpDtxMhwUza6tgVpK2QeLslpjiVtpn1vo+YbjEuhUismksOIdMQzGGRiOdQWkY8NRTMQV7sXNIv/deZPiM2oCgiMhqKYY2XCzLIjs2hj0vaFAcHyewVNl1lCxW7TxvBfzSK9q3ixerdj5mYDsjHliaY5SqZWjygcgQiXzsp+9rv+2c1/clgaM5+Xm9YxKWHba1JyJrlySJEiVFZKj09QrSMAwuuOACLrjggpU3nuMVr3gFr3jFK1beUERkCUEQkMs6bCmaXLrL4f4HOsxcAi7b5VAsmutbJ3wIOI5DxYcTpZgDBzv/+wA8eDCgVIrJFsEbsJmoi82svffuMpO1WtsMy49/uMSOi4wFM2vL5bICcSKbmGksPId8+t4Kv3Vm3BYK2PfWKSZfWF54DmlM923fRYbZKA0IioishWJog6+tsmvFTwdsk9nKrlUfckVVdh0VS1U7x1r6Pm3VziegaJhLbzyiRqVahiYfiMhaJElCLsu6xiRyWYhiXfOKiIhsRpvvClJEBKjX61hWWlHl6j05HGfl+wBkHLhqTw7bSYMzo8o004+HKIRHjgSrmkUE6ayjh48ERDMVagZpKYq5M2sPHGqw78ZpDhwMmD/ZKZqZWbvvxmkOHm5QLkMUpckZIrJ5ue7YgnPIlx4KFszxitd7DrFcwpN3t31h6fwj0hwMr9Vr1Bt1Go0G9UadUqmE7/tK7BIRkb6wbRvP80iSNNmnNJUm8jxzIubpn8Q8cyLmySdjSiWYmoYkSSu7zq/uJcNjvdXOwwDiTV4oIkkS4iQe2uozzckH6STAgIwD2Szksun3vAtxHMzZRold0jnDMDANc6BiqrJ+cRx3ZUwiCnXdKyIishkpuUtENqUoioiiCHcMJidsbtibX/FiynHg+r15Jids3DFGevCwGThIEvD9tQXZfH/wCto2Z9b61Xkza5fRnFl77HiIX51tQ0Q2H8MwunIOMTfhDH2RjTDsA4IiIjIa5laHnp6Go0dD/uoDFY5+K+TJp2NOlBKefDrmP/3nKW65vczRoyHT0xCGaeJ/c3KVDBfHcajV117tfGoqbk2Ik+GmyQebWJcnZVmWheu65LI5spksmUyGbCZLsVhsVYaU4ZYkSVfGJOJEyaIiIiKbkaIHIrJp+b6PZSV4HuzameHm/QV2Xuwwfz6UacHulzjcvL/Arp0ZPA8sK6FarfZlv3uhOUhqGOC6a5sh5rrGgr9lv3VjZm0Upe2IyOZjmmZXziGWrYCsiIiIyKiYXx36b/5HlUt2Ojz/PJttkzbnPsdi26TNe24vctmlGf7mf1RVHXrIdaPa+ZFHA1TIafRo8oGshWmaeJ6H53mYpkMjgHodavX0e8UH03TmbKNhvWHm+9UFYxIXvbjzMQnf9/uy3yIiItJ/Xa/9XS6XW//3PK/bzbc9zh133NH6+bWvfe2GPZaIjKY4jvF9H9d1KRQMtm2zmXhDnvxDNuVyTBSDZcJt7x6ncKqH7YA7NnsRNcrl1JvPzbJhx3YnLfe8imClZcGF2x2smU+ZQQlqOY5DxV/7zNpSKSabM8m7HdbMFpGRYhjGumbnl0oxWRs80yJgdfcXERGR0aMY2vAzDRPLspiqwuOPRzz7TIu33ViAehWO0FbN2jAMXnJphpdcmuH7P4j40eMRlm0xXkirQ6u6T2cMw8DAoJ+1wrtR7bxaHbxq5yLSe7Ztt5KEp6YhrIJZSXj88YggBMeG7JaY4lZmYtPpsr6+7xOGKv83jOJkkTGJ1+cpHjJpNBKSJJ1w/a53juOdvrnGJERERGR5XU/u2rlzJ5Be5H7qU5/izDPPXHb7tQaYSqUSf/Znf9a6mFZgSkTWIgxDyuUyrusyXrCITDAcOGmLSQIYQO5Uk1xxZj37KKJcTi+imuefURUEAbmsw5aiyaW7HO5/oPNEhMt2ORSLJrns4CR2dWNm7cNHAq68IttqTxfTIptH85y/7nPIy2fbG5Tzo4iIiPSHYmjDz7KttF+YwBmnW8RJmvCTJBCGMF2O08qtFkz9JKb4rHTA9tnPtjCN9H7N6tCbuRLHSglblmWRzbhksrm22zPFIkGSoV6v9zQ5rhvVzsfGBq/auYj01txlfctlOHY85N67y0zWaswNF3z8wyV2XGRw9Z4ckxM2npdWfSyXy4pNDqkFYxIzk8zHckZrTOLkUxYfkxAREZHNq+vJXasdpFpvgClJkpFPsBCRjRXHMeVyOQ0WJgGZeatl5V0I4oBqtbfBwn6r1+t4noPtwNV7chw6HHS0BFnGgav25LCd9OJzUC46uzGz1veTVnBFnz0im1NCl84hfa42ICIiIv2nGNrws0wLPwA3bzBVSvt63/xmyD3/q8KvnBa2Dc7/4V9O8cKLPP7Dr+V47nNtEiCfN2gECWO5zVcdupOErSRJcF03rWxWr9AIIIlpDXwHPuTyDp7nEEVRzyqadKPa+fYXOZhTG7SDIjIU5i7re/BQg1tvr2AlARMXtG8XRXD/AwGHDgfcsDfPrp0ZCoXZBC8ZTm1jEnGAPbPaZrOntlnHJERERGRpG7I491oCRapcICL9FkURfrVKGIZEUdT6Kk1N4fv+pruIaj5/dwwmJ2xu2JvHWSHe7Dhw/d48kxM27ljaxqCc37sxs9Z1DZofcYPyvESktwy6dA5RYpeIiIigGNowa752Gceg0UiIE7j//gZvvG6a+x8ImP8yRRF89nPBzO8bxAnUGwkZJ22nWW161Jmmied5eJ6HaTo0AqjXoVZPv1d8ME0Hz/MYHx8HLKamoVSCSiXh2PGQbxwNOXY85IknYkolmJqGJEmXKrPtrs9lXlRa7ZxWtfPVuGyXw/i4idWbXRWRAWRZ6ZK8fhWOHw+59fbKipNqgwBuua3CseMhfnW2DRERERHZHDbkElIzAUVk2ClYnvJ9fyboarBrZ4ab95vce3cDo0ZboNqyYPclDle1yoODZSWU/Spu/3a/TTdm1l643WkFXwelIpmI9Ebzc2H955CwrT0RERHZ3BRDG17NRfUsCxrVtGLXO/bPDM4vE3ENAnjHOyv8xXtMnv+8dGIUbI7q0LZttyrVTE1DWAWzkvD44xFBCI4N2S0xxa3p5DHXBdM0+NGPQv7ufwzWUmXrr3ZeT5fmFJFNKZvNEkUQBnDHXbWOzh+QfobceVeN69/iaVnfIddcltOyLKKSQzLzsdWsTlnxITfW++qUIiIiMrg0P0hERJYUxzG+7+O6LoWCwbZtNte90cN8LNcWfL38miLjWz1sB9yxNLHL933iZLAuONOZtU5rZu39D3QYOSGdWVssmuSyaTsisvkkSdI2O3+t55Ao3lyVIEVEZMhZYyROccFtIptdQgJGmvAfxfDRv1/d4PzffazG296aDs7btjHyyf/NQewwNCiX4djxkHvvXjxh68KLzJnJYxbZLIyPmzz+eMzEvFNRP5cqm612brWqnd9yW2XZ+7RXO68TJzGWoao7IpuR4zhUfDhRijlwcHVxxgcPBpRKMdmcSd7dfMv6joIFyc7TUIyh0UiXeDYMeOqpmILNTLw9rU7p+z5h2O+9F5FObIaJGyIdU1ypazZHvW8REVmzMAwpl8sYRsR4AYpFyOcNJidszttmMzlhc+ppJsUijBfAMCLK5TLhAF5p1ut1LIvWzNqVlplsmp1Zm87KrtfrG7ujIjKQ4jjuyjkkCpXcJSIiIjLsmslY9XpC6US8qsR/gPvuD5gqxdTraTujXo2jOYg9XYYDhxrsu3GaAwcXLl8ZR/DAg0Hr934VMhmD3//d/JJt92upMt/3sawEz2Om2nmBnRc7zB/KMy3Y/RKHm/cX2LUz06p2HgaDFzcZVIZhtL5Ehl1zGd4ohEeOBKuqCg5pYuvDRwKisL09GQ6mMZvsPD0NR4+GfPD/W+Hpp2OmphOmywlT0wn73jrFLbeXOXo0ZHoawjBNXtbrLTJ4LMvCdV2y2WzrtkwmQ7FYbFXoExHpBvUCRERkRXEcUy6XZ5Y2CMg4kM1CLpt+z7sQx8GcbQYzKD07s5bWzNqVkjPaZ9bOtiEim0+SJF05hwxaVUMRERERWb1mkkkYwSNfDlltzolhwMNHQpp5/6M8WNtMtvKrcPx4yK23V5aucjbzhwwCeMf+Mt/8ZggJnPVsi9NOXfpv1FyqLAxoLVW20ZrVzm07oVCAbdtsfu8NeZ53ns1ZZ5qccbrJWWea3Pbuca5/i8e2bTaFAth2Wu181Ku1rZdlWbhjY9i23XoPWZZFcXxcA6Uy1JqfH0kCvr+284DvJ63kWCU9DhfXHVuQ7PylhwLmvxPimeqU+26c5uDhBuUyRFGa4NURyyU8eXfbF1aH9xWRjpimied5eJ6HaToEAdTqCbVaQr2eLq9qms6cbUa3vy8ivaFlGUVEpGNRFOHXfeJ6LZ0xiUFCQrVUAnvpWbSDxPf9mc60MTOz1uTeuxsYNdpmDFsW7L7EmVkKwm7NrC2X/f7tvIj0ne9X8dyk7Rzy6XvT2flzA3HN2fkLziHTPpl+7byIiMhaWC7x2DkLbhPZ7AyMtAM4Mzg/ljMIgmRBJapF72vAWM5IB/WTdBLBKA/OZ7NZogjCAO64a/nlKw3Sa/M4Bt9Pl6/8z//JwwCee67NE082lrxvP5Yqa1Y7d12X8YJFZILhwElbTJKZ55M71SRXnKniG0WUyz5xGKLF1BbXXMLTsiyiip9WNUoPFQyg6kOu6OB5Thqn8v2BnWQosphmYqdhgOuu7dzvukYrqViJosPDMAxMy2JqfrLzMoGiZnXKm/ebbNtmMz5mERumJg6K9NmC5VWrYFYSHv9xTBAkODZkt8QUty62vKqqt4rI2ii5S0RE1iRJEpIFc4oGX3Nmreu6FAoG27bZXPdGD/OxHI8/HhGE4Nhw+TVFxrd6Mx3vNClDAUMRiZOF55CJ1+cpHjJpNNLBPMOAd71zHO90nUNERERERlXretiAvGtg2eDlDcqV5a+TDSPdzrLT+7EJBucdx6Hiw4lSzIGDKy9fmZAmgiUJfOG+gBMnYk4ah7OebWLbsNR4WHOpsiuvSKt2mabZk/53s9q5ZVlkk4DMvIJSeReCOKBarasS+AoWDJSWIR9AuRwTxWCZMP1kzDgaKJXh1TwvWTbs2O7MJH52fn/Lggu3O1h2e3sy+EzT7DjZea5mdcrr3+IRZcCyLeJAr7tIvzQT0cPQoFyGY8dD7r27zGStRrNznyQJH/9wiR0XGVzdmvybVt8b5NVvRGSwKblLREQ2nQUzazMQ5w0mJ+zWTNDgNJNcft7MWnW4RYRFziEzgwxjOaN1Djn5lEVm5+scIiIiIjIymslYtgXbt9vYM1HWcdNYtCKTYUAmk/YZLRtsG3bssLFnEoFGta/YXH4mCuGRI0HHCQzNv28YwuEvBvzcFWnFE3fMYGp66US4fi5VllY7r2KGYdtjT09NQQ+WiRx2iw2UfvKeCq8qhm1TC2/66BTnb/c0UDooZpZ+m3+bLC8IAnJZhy1Fk0t3Odz/QIdZPsBluxyKRZNcNm1HhodhGNTqnSc7z9WqTmmDZ1oE6LUX6ZdmIvp0GQ4eanDr7RWsJGDiAtqWao9mllc9dDjghr15du3MUCjM9ls2pbBC7vh7226qTVw7NCsDifSbFncVEZFNqTmzNg3+BWScNNaay6bf8y7EcTBnGwUIRWTW/HOIYYJhgjnzXecQERERkdEXxRHZLOng/CUOhpFWYvE8A9tOE/1NK/1eHDfwvDSxyzBmBufHTbIjPjjfTHJKZpavXO39ACpz7mc7yydsDcpSZUmStL6kM3MHSg8carDvxmkOfzFYUDM+nhko3XfjNAcPNyiXIYrSgVLpH8MwMA1zpJeY7aZ6vY5lpRXort6Tw+lwndaMA1ftyWE76WdLvV7f2B2VrmkeG6tNdm5qVqeMwvb2RKS3LMvCsiz8+curLqO5vOqx4yF+dbYNEZHVUnKXiIhsalEU4fs+tXqNeqNOo9Gg3qhTKpXwfV9LJojIsqIowq9VieOYJE5aX6XpKZ1DREREREZcFEatwfmr9mTJOGAaMzP2jfbkf8NMf2cakHVgzy9nN8XgfDO5yTDSxKtOGKR/0+a4dX7O/cJg6WQpLVU2vDRQOpwsy8J1XXLZHNlMlkwmQzaTpVgs4rquXo9lRFFEFEW4YzA5YXPD3vyKCV6OA9fvzTM5YeOOzbYhwyVhdcnOc7VVp0TJXSL9kM1m17W8ahikyZpZVXWVzcRyicfOaftSpde1UXKXiIjIjCRJiJNYM2tFZE2SOf9EREREZPTFSdw2u1+kFwABAABJREFUOL/3LS62nbSW6m77MtIBXdtOeMtb3E0zON9MsLJs2LHdYaVcj4T0b2WaaSKDbcPOix0MIE4S/OrSfW0tVTa8NFA6XEzTxPM8PM/DNB0aAdTrUKun3ys+mKYzZxsNQy3G930sK8HzYNfODDfvL3DpLof5BZksC3a/xOHm/QV27czgeWBZCb7v92fHZV0MOk92nq+tOqViTyJ94TjOupdXrdXTdkREVsvu9w6IiIiIiIiIiIiIDCPf9/G2FPA8g107M/w/+00+ec8JgLZhV8NMeOllNlftyTE5YbcG58vl0R+cD4KAXNZJl6/c5XD/A8sMhM2ZbDWWM7joIpstW0yMGH7wg5gwXPxu85cqq1ZHtxraKHIch8o6B0qzOZO8q4HSjWbbdmsJzalpCKtgVhIefzwiCMGxIbslprg1rcDnjll4nofv+4RLHcCbVBzH+L6P67oUCgbbttlc90YP87Fc29/z8muKjG/1Zv6es4ldqk44XJqTiecmO68mt3u2OmXY1p6I9E4zWXm9y6teeUW21Z7O5SKyGhua3KU1n0VERERERERE5P/P3p3HSVbX9/5/n62q+lR11ywsgop2QyOLMKAODWYiCMQtojNgruaRm8SFH0Qh6AyJjuLNFSMRzR2GGIxLlAd6ozcQHZZR48OFGOPALLIvyjYtEnUAwenu06er+my/P6qruqu7Z6Z6utau1/Px6EdXVZ/zrW91d52q+pzP9/PB/hFD61zznZzvvzir7N22PC9WFEuWKW3+dJ96D+3Ok/PFYlG5nCPbkc5fm9HOXcE+KzOVT1UbhtTTI/3JH/dUqpQ8/sT8iSG0Kuts5eMfJ0rbn2macl1XYWjI86Tdw6G23uppoFCYmZepm24Y0SmvNHR+JZnVkOu68jyPv80sYRjK8zy5rqu+XktRSoqzhgb67UoVyOAwU5msppKBInled7x2LEVJkiiTVm3JzrPMrE4ZxbzGAa1Qfs+SJHVqr8pnQAAL1JDkLsMwlCSJzj777AXtlySJjj/++AXfDwAAAAAAANBpiKEtDXNOzpuS4UjLl5mVk/OZQ01l8t15cr6cbOX2WBrot3X5+qw2bR7XvjpKJUmiVMrQhg9kdczRllzX0G/+O9azv63+fVmWtOY0pyuroS0lhjhR2inKFbvGPGnHzkldc+24rCRQ/8nV20WRtO2OQDt3Bbp8fVZDq1Pq7Z1O8EK1OI7leZ4sy1LaCpWaVYAu5UpBHGhiokjiaoeL41iWpZqSnWeaXZ0yCPk/AFqh/HnKMOrUXpXPZwAWqKGVuw7moLSQffigBgAAAAAAgE5HDK3zVZ2cTwKlrOqfZ7v85Lzv+8rlcpX2lVdfZWrrrZMyClWdGGVZ0u/NTNjqNWRbpUS5t7yZVmVLUaL5T5QaUzfOPnoZhlE6piVJJT+QE6WNZ1mWLMvS6Jg0PBzqmmvHFQSlFnP7EgTSps3juvoqU4ODtvp6S2N04zGwFlEUyS/6iouF0v+5DCVKNDEyItnZVk+v8eysCoMbWz2LhkqSZCrZWdXJzvsxX3XKOOF1Dt1n5nGxVcrvMRffXrV6PACoVcOSuwgaAQAAAAAAAPtHDG1pKZ2cn5AZhlV/27HRUSmdbuHMWmu+9pWXXZKT+cj+E7Ycp3QyPJejVdlSVU7GKp8otS0pjkvPHUNzC7wlSXXil2kmnChtgnQ6rSiSwkDackuhpmpDUinB6+ZbCtrwgZyiqDSO71Nd70CSJGlpAgMax/cnlHOTqmTnH2515hzvTEta8+p5qlOO+Uq1avJYktr5s4hlWUqnXKXSmarbU/m8giSlYrH5iyaCIFAm7Sy6vWpQ6wspAMzQkOQuVscAAAAAAAAA+0cMbWnj71ttTvvK1IETtkZHfRmGQauyJa50olRTJ0pT2nZnoCSZquo29b38PxLHUlxpwSidcXqKE6VN4DiOxovS3pFY23cs7Pd8545AIyOx0hlTWdc58A7AEhYnc5Od+9+TVX6nqcnJUotZw5A+9Yk+5V5AdUo0hmVZSvf0yLar0wTyfX0KLLclSVMzmaYp13VL1R6L45oMpCSefi8Q+FIm6yiXc0oLK5r43CgWi8rlnEW3V52YKDZ+sgCWnLond/3whz+s95AA0H7CcWWGr5MypRUDmUJBE/2XdkeJbAAA0HqWq3Dlmjm3AQA6BzE0dKOq9pULSNjq6lZlXaBYLCo3Valt3dqMduwKVJiQPC9RGFZvOzqayAsT9WQM9fRIa9+akcOJ0oYqV3WJQune+4IFtaCSSi2r7rkv0Llnl6oXmqZJggq62pxk51iyTKknY1SSV1YeYiqTpzol6qs6acrQ5PKzqpOmJrMtS5oqs21brusqigyNjknhhGSOJ1WVXtPLYuVXaCr50VIul5Pv+wpnv2logCiKptqrWtXtVfezpmO+9qosTABwMOqe3PXCF76w3kMCAAAAAAAASwoxNHSzUvvKhSds0apsaSqf4HRdQwP9ltZfltXfXOnJtOZumyTS5KQkJfrwh3Ia6LfkuqWGZpwobYxSA8zS7973D+755/ulikRSe7cAA5qlKtk5DmSbpdvLz44s1SlRZ+2eNCVNJ5+FoSHPk3YPh9p6q6eBQkEzC+LedMOITnmlofMrbUsNua4rz/Oakozm+75yuVxVe9Wtt07KKFRvZ1nSmtPmaa/q0Z4YwMFpSFtGAACAbjbz5AQAAAAAYN9I2IJllbK4TFPq6ZFOO83Rdf/Qq9u+sVeGoaoTupYlvfYsR3/89oyOOcZWT09pv/I4JEHUX/n5aRiaSqRbONc1VM7pomUtus3+EhqjKJJfmJAdx5VESkkaGRuVouXNmB66QKckTZWTz8Y8acfOSV1z7bisJFD/ydXbRZG07Y5AO3cFunx9VkOrU+rtnZ5ro8Xx3Paql12Sk/lIRnuejhUEiRxbOvOivPpW0F4VQP2Q3AUAAFAHlmUpnXKVSmeqbk/l8wqSlIpFVtoBQKegmgAAAEDzpNNpRZE0Pp4oikpJRIPH2NqwPqvc3bbGvFhRVErs+tLn+9R3WK6UKGRIExPS5GSibLY0ju9TDaPeyslYli2dssqZahNX+/6WJZ26ypE1dTaKk9roBpZlKd3TI9uuPg2b7+tTYLnzxglJdG6dpb5QtxOSpizLkmVZGh2ThodDXXPtuIJAldeO+QSBtGnzuK6+ytTgoK2+Xqtpid5z2qumpCRbqkBa/jcKDjOVydJeFUD9mK2eAAAAQCczTXOqDHNOpuloMpCKRalQLH0f9yXTdGZss0TfftlZFQY3Vn3tr50KALQLy7Lkuq7S6XTltlQqpXw+L9d1K5UkAAAA0BiO46hQlH77XKy/3jiqp56KZBiSaUi2LS1fZuqQlaaWLzOVX27KNEsJYE89FemvN47quediFYqlcdAYQRAok5aW5U2dPrSw3/MZQ47yeVOZdGkcYCmbHSeMIikKpTAsfe+aOGEHKMcCMumM0qm0UqmU0qn0kosFlJOm/InqpKn9KSdN7R4O5U9Mj9FI5UTvMJC23FI44BxnzvXmWwoKg1Jy2szYTqOV26uWKpsFchwpkzaUyRhKp0vtVeM4mLENiV3oboZhVL5wcKjcBQAAcJBs266sfBodk8IJyRxPtGdPpCCUHFtKL4uVX6Gp8suWcrmcfN9XGIatnj7qbGb5fADtr9yWwLIsRcVScDNOkukVlr6UyTrK5ZxSqwxK5wMAANRd+eROFEr33hfo8ScifeDyUb38RFtv+YNJnW2r6pNWHCfaceekvvu9oh58qPS5+p77Ap17dulkrmmavGdrgGKxqFxPKbZx/tqMdu4KajrxnnKkdWszsp1S5ZKJiWLjJwu0yJw4oSdlA8nzYkWxZJnS2LOx+jQrTjjBqdpmmh0LmAykJC6FAgwtvVjAYpOmNnwgV0maamR1TMdxNO5Le0dibd+xsETgO3cEGhmJlc6YyrrNT/SOokh+0VdSLCqTKXX1mJyclD8ywuJndL2DqWSJfeMdAwAAwEEoBwLC0JDnSbuHQ2291dNAoaBkRgXvm24Y0SmvNHT+2owG+m3lctOlrDs5MIASy7KUzvTMWWmZ7+1TkObDCdCu9pmc+3SsIEhIzgUAAGiS8iKZJJF8f/rD9IMPhfrvJ3wd8QehHFsyLUNxlOh///OInh5JVY3h+0nlcziVABojiiJFUSS3x9JAv63L12e1afO49tfBzHGkDeuzGui35fZMjwEsRfPFCb9727jOy4dVT5Mrvz6q41flquOEPT1LuiVgO+nGhbqdkDRVjquWE70X+lIRRe2X6J0kPJ/R3aoSacf90vM6mU6knfClTH7pJNI2C8ldAAAAB6EcCBjzpB07J3XNteOykkD9J1dvF0XStjsC7dwV6PL1WQ2tTqm3dzrBC52p6sPJiKNk6nNH+cPJuC9levhwArSj/SXnqnJyMSE5FwAAoAnKyQyGIbnu3MSsOJaKk6UtJak4T+En1zVUzuniZGrj+L4/1UrO0NDqlK6+ytTWWydlFFS1yM2ypDWnOVpXeR8tWVYiz2tcxReg1eaLE2atQG8+p3q7eL44oWHIMQyOXw3WjQt1OyVpqpyYPTvReyFI9Abax0FXsvR9FgIcAMldAAAAC2RZlizL0uiYNDwc6pprS+28rP28swoCadPmcV19lanBQVt9vaUxeLPaeeZ8OBmT8rE0OVkKIhiG9Nvfxuq151vl1+rZA9hfcu7M+B/JuQAAAI1XTmawbOmUVY4sSws6+WxZ0qmrnMrn8U478d5J4jiW7/tyXVe9vYYGB21ddklO5iOZqqo3Z16UV9+K3NTn4VJiFwuesJTtK04oa9/7VMUJj5TyhmQkVO9qpG5cqNspSVPl9wL7SvSuBYneQHtYVCVL19X4+HjL5t4JzANvAgAAgJnS6bSiSAoDacsthVLApgZBIN18S0FhUAoUpNPpxk4UdWca0x9Oxsakxx4L9aUvj+u552KNjiUa8xKNjiXa+NFRbbrW02OPhRobk8Kw9OFkdvtGAM1VDrr7E7OC7vtRDrrvHg7lT0yPAQAAgPoIgkCZtLQsb+r0oYW1fTpjyFE+byqTLo2DxgrDUJ7nyTAi9fVK+byUzRoa6Ld17KCtgX5bhx5mKp+X+nolw4jkeV7HtjMDarHoOGEoKaHaUCN1ayygU5Kmysm/MxO9F4JEb6B9zEyk3b5zUhuvGNOunwZzUpfLlSw3XjGmHbsm5XlSFBnq6elpybw7BWeXAAAAFshxHBWK0t6RWNt3LCx4fOeOQCMjsQrF0jjoLK7bM+fDyV131/7hxHXdlswbQAnJuQAAAO2nWCzKskqVj89fm1GtH5VTjrRubUa2UzqxW5yvZyPqLo5jeZ431aIsUMqR0mkpky59z7pSHAcztuEkO5a2xcYJvdG4VBmpltwbO6vC4MaqL9nZg5p3N+nWWEAnJU2R6A00UJNeO+qVSIt9I7kL6GThuDKPXV31pZByhfVgGEblCwBmKldeikLp3vuCBbWLkEqBgHvuCxSF1eOh/RmGUZcPJ6bB3xxoFZJzAQAA2k8URYqiSG6PNNBv6/L12QMmeDmOtGF9VgP9ttye6THQPFEUyfd9FYoFFSeLmpycVHGyqJGREfm+z98DXaEeccKHfjb92dSoKcMLC9XNsYBOSZoi0RvofPVKpMW+cWYJAKZYliW3p0e2bVeyiy3LUr6vT67rki0MQNJ0ifQkkXz/4EpR+36ichVrkkg7h2madflwYtm8ngCtQHIuAABA+/J9X5aVKJeThlandPVVvVr9KmdOmoNpSWte7ejqq3o1tDqlXE6yrES+77dk3ihJkkRxEjesZRfQruoRJ5woJnMqwqN+uj0W0ClJUyR6A52vHom05Gfun93qCQBAq5mmWUneisb90pv7RCpXQp7wpUzeUS7nVFakUUwc6F7lQKVhSK57cIlZrmuonNNF4LNzGIax6A8naVvKmZYCUSIcaDaScwEAANpXHMfyfV+u66q319DgoK3+i7PK3m3L82JFsWSZ0uZP96n30JxsR3J7phO7aP0HoBX2FycshK7u/c3vzblttp504+p1GYYhQ4a6OX2s22MB00lTViVpatPmce3vX6JVSVO+7yuXyymXM6YSvU1tvXVSRkGaGUK3LGnNaY7Wrc1ooN+uJHp7HoneQKvUK5H23LM7q/1ts5HcBaCr2bYt13UVRYZGx6TQk7KBqoJGY8/G6pOmgkaWcrmc/NGJVk8dQIuUA8aWLZ2yypFlLaxUrGVJp65yZNnV46G9lQM3i/5w8prp8UjsA5qL5FwAAID2FoahPM+T67rq67UUmZLhSMuXmZVFmJlDTWXymvosHsnzSOwC0Dr1iBOeeLwjPVq6Xo8kLMuylE65SqUzVben8nkFSUrFYrGrqhsRC+icpKn5Er0vuyQn85GM9uyJFISSY0tnXpRX3woSvYF2UrdE2npOagkiuQtA1ypX7ApDQ54n7R4O9d3bxnVePqx68bjy66M6flVO51fe0Bql/TpshQaA+gmCQJm0o2V5U6cPOdp2R+1VmM4YcpTPm8qkS+OgsySq0yq/Ll81CbQCybnoWHZWhcGNrZ4FAABNEcexPM8rJSckgVKzutpnXSmIA01MdFdyAoD2tdg4Ya7PLCUOLTJMVNWhpDiuyUBK4ukOJYEvZbKzOpR0wedaYgGdlTQ1J9E7JcVZQwP99vT/8mGmMlkSvYF2Uo9Klq7buEqWSwXJXQC6Vrli15gn7dg5qWuuHVfWCvTmc6q3iyNp2x2Bdu4KdPn6rIZWp9TbY8h2OIQC3apYLCqXc2Q70vlrM9q5K1AteVopR1q3NiPbKX34nJiggXinMVSnVX4kdgEtQXLuIoXjygz/Y9VNhf6/lOxsiyYEAKgHWjahHUVRJL84ITMMq1pgjY2OSmnatQBoH4uOE9qSDCmJD/51eE6HkgnJHE+qEnfSy2LlV8zqUOL7CsPwoO+3UxAL6KykqapEbytUyqn+eYpEb6Dt1CuR1ubU+36ZrZ4AALSCZVmyLEv+hDQ8HOqaa8cP+IErCKRNm8e1eziUPyGZBodQoFtFUaQoiuT2SAP9ti5fn5Xj7H8fx5E2rM9qoN+W2zM9BjpDeeXJzA8nCzF7lV8nlnAHloJisSjLUiXofqBjd9ns5NxikeRcAEBnsyxLrusqk84onUorlUopnUorn89Xqn4A7SJJksoXALSbRccJM5KSg18IOLNDydiY9NhjoT7zWU+3faugHbsC3X1PoB27Al36/hFtutbTY4+FGhuTwrDUocQ0l/55DmIBJeWkKc/zFMeBUk4pXzqTLn3PulIcBzO2aW01rHKFuUKxoOJkUZOTkypOFjUyMiLf94mtA22mlEirSiLtQpQTaVnDsX/kvgHoSul0WlEkhYG05ZZCTStppFKC1823FLThUkNxIlnUhwS6lu/7yuVyyuUMDa1O6eqrTG29dVJGQZoZb7Ysac1pjtZVWruWSlp7nt+6yeOgJElS9eHkYFf5RTGBB6BVpoPuViXovmnz+H7bX5CcCwBYSmjZ1J5mVqYC0CFond3+LFfhyjVzbmuERcUJC4tLXp2vQ4mVBOo/uXq7aL4OJb2lBK/x8fGDvv9OQCygWqk6pq+4WKiq4DoxMtK2lbmTJKHKLNDm6tXxBvtGcheAruQ4jsZ9ae9IrO07FlZK984dgUb/zFZfKFmpBk0QQNuL41i+78t1XfX2GhoctHXZJTmZj2SqSp6feVFefStyUyXPS4ldnCDpTHEcV63yO9gPJ0G4NAJBQKfaX9B9JpJzAQBLDS2b2oNlWUqnXKVmLEtPpVJy8nkFSUrFIi2GAKDTLCpOODEh9yCTVsodSkbHqjuUWPs5+1vuUHL1VaYGB2319VpdUbGThbrzI2mqTiJf9nM/UbmnnB2G0lHvbttkOaAR6pVI2w0VJQ8WyV0Auk75RSEKpXvvCxbU81cqrXC574FAR764AZMD0FHCMJTneXJdV329lqKUFGcNDfTb0yvfDzOVyWqqx3gkzyOxq1MlSTKnzP6mzftf2Tjfh5M44e+P7jNzJWir7Tfo/nSsIEhIzgUALDkzWzZ5nrR7ONTWWz0NFApVJzRvumFEp7zS0PmVE5qlih7t0Jqn082umhYEUpwklZMdVE0DgM520HHC6OATqBfdoeQDOUVRKcl4qWOhLgA03mITacfHJ+TU2ju3C7U0uatQKOjb3/62tm/frp/97Gd67rnnNDY2tuCVSYZh6OGHH27QLAEsNeVS90ki+f7BnWCcmGiHU5MA2kEcx/I8r7T62gqVmvW+M+VKQRxoYoLV10uB708o5yZVH05+uNWRoeoFKKYlrXn1PKv8JgzFtG1Al5iuSpGpuj3VBlUp5gu6J1lDA/3W9AlWknMBtBFiaFiserRs8jyvNZNfAvZZNW1GYjlV0wCg8zU7TrjYDiUjI7HSGVNZtztOpLNQFwAai0TaxmpZcte//uu/atOmTZWgwGL6SQPAQpSPN4Yhua5xUGP09Bg6uD0BLFVRFMkv+oqLhaoKNRMjI5RfXkLiZO6Hk/73ZJXfaWpyMlGSlF5fPvWJPuVewIcTdKfZVSkmAymJNR0obZOqFPMF3acXASQk5wJoG8TQsFj1bNnEa+LCmca+q6ZJ0+89qJoGAEvHguKElqu456g5tx1IPTqU3HNfoHPPTh944yWEhboA0FiLSaQtx2Yxv5Ykd33iE5/Q1772tRkJFkZVEL1WhmEQ0AKwYOWAmGVLp6xypl44at/fsqRVJzkyRxs0QQAdL0mStmg9hsaY8+EklixT6skYlQ8nKw8xlcmzyg+N107tDqX9VKWYsTKr3apSlIPuSbGoTKZUZWxyclI+yblAFQJsrUEMDfVQr5ZN6XRavu83drJLkOv27LNq2sxDK1XTAGBpalScsB4dSnw/Ube+RWShLgA0Dom0jdH05K6tW7fqX/7lXyRNB5aSJJHjODrqqKPU19cn225pt0gAXSAIAmXSjpblTZ0+5GjbHbWXLD5jyFFfnyGLeCYANFbky37uJ9W3HfWetgiwVH04iQPZpcWSlaqOWT6coIHatd1huWLXfFUpZgaLO6EqBQkQQIllWUr3HiL7yHOrbs+vOKLl7VW7ATE01Astm1rHMAyZlqXRCaqmAQDqqx4dSlzXEGs4WKgLAI1CIm19NT0C9JnPfEbSdFDqxBNP1GWXXabf+73fIyAFoGmKxaJyOUe2I52/NqOdu4KaVq6mHGnd2oxspyiTDz0A0PWiKJJfmJAdx5rZsHdkbFSKlrdwZliK2r3dYbli13xVKWaiKgXQ/tr9eNMtiKGhHurdssk0TZ7vC2CaZntWTbNchSvXzLkNANA56tGh5NRVzn4TjoElyc6qMLix1bMAug6JtIvX1JfsRx99VE899VSlVOhZZ52lz372s7Isq5nTAABFUaQoiuT2WBrot3X5+qw2bR7f7z6OI21Yn9VAvy23p6g4iWUZHL8AACV8MEEjtXu7Q8sqVZQYHaMqBdDpFnO84flbP8TQUC/1btlEi9aFMQxDhSJV04AF4aQ7ULPFdijJ501l0qVx0ul0A2cKAAAWq6nJXQ899JCkUlaebdv6+Mc/TlAKQMv4vq9cLqdcztDQ6pSuvsrUd2/bK0OqOj1vWtKaVztaV2kdJFlKFAahrDTHMADoeparuOeoObcB9dIJ7Q7T6XR7VqUAsCCLPd6Mj+9/wQxqRwwN9VLvlk20Lq5dORGOqmkAgEZZfIeSUgWvQmGS5C4AANpcU5O7nn/+eUmlD7YnnXSSDjvssGbePQBUieNYvu/LdV319hoaHLTVf3FW2btteV6sKJYsU9r86T71HpqbWpUuWVYif9SXQ0ATAAA0QSe0O3QcR+M+VSmATrfY401PT09rJr4EEUNDvdS7ZRPJRQuXiKppAIDG2GeHkv287FR3KJkeAwAAtDezmXc2c4XhkUce2cy7BoB5hWEoz/NkGJH6eqV8X+nDzfJlplauMLV8malDDjWVz0t9vZJhRPI8ryntjQAAAMrtDv2J6naH+1Nud7h7OJQ/MT1Go5hm6WPlYqtSRGH1eACaq17HG9QHMTTUU6llkyotmxZidssmLJwhqqYBABrH931ZVqJcTlMdSnp1+pCj2TnB1lSHkquv6tXQ6lSpQ4mVUD0bAIAO0dTKXS94wQsqlwkGAGgXcRzL8zxZlqV0Eig163xE1pWCONDERLF9VrBYrsKVa+bcBgAAlpZOaHdYriKRJFSlADpZvY435GfWBzE01FO9WjZNTBQbP9klpJyMRdU0AEAjzdeh5LJLcjIfyWjPnkhBKDm2dOZFefWtmNWhxPcVxzGfwwEA6ABNDbkdd9xxlctPPfVUM+8aAA4oiiL5ExMKw7BSijiKIo2Mjsr3/fZJ7AIAAF3DcRwViotrd1golsZplPKJS8OgKgXQyepxvCmS91E3xNBQT9Mtm1Rp2XSgtwa0bKqPJEmomgYAaLg5HUryUjZraKDf1rGDtgb6bR16GB1KAADoZE1N7nrpS1+qU045RUmS6JFHHtHTTz/dzLsHgJolSVL5ArqBYRgyDZNVWsBMU1USZ35RJRHN1CntDstVJGZWpVgIqlIArVev4w3nhuqHGBrqjZZNrRHHsSxLlapptebbz66aViR7FgBwAOUOJZ7nKY4DpRwpnZYy6dL3rCvFcTBjGz57AwDQSZpeLP/iiy+WVEqc+OxnP9vsuwcAAFMsy5LrusqkM0qn0kqlUkqn0srn83JdV9ZCz84DQIss1QTVTmp3GAQBVSmADla34009JwViaKircssm207U26tKy6a3vDmjodWOXnGqo6HVjj77D3lt+EBOg4O2ensl255u2YSFS5KEqmnoPHZWhcGNVV+ys62eFYAaRVEk3/dVKBZUnCxqcnJSxcmiRkZG6FACAEAHa3py12tf+1r9yZ/8iZIk0b/927/pxhtvbPYUAADoaqZpKpfLKZfLyTQdTQZSsSgViqXv475kms6MbRb4doEgIIAm6IYE1U5qd1gsFqlKAXSwuh1v6jkpEEND3dGyqTV8f4KqaQCAlkiSRHES06EEAIAlwG7FnV5xxRWSpK997Wv62Mc+prvuukvvfe971d/f34rpAADQNWzbluu6iiJDo2NSOCGZ44n27IkUhJJjS+llsfIrSifo3R5LuVxOvu8T0AfQFkzTrCRvRcVxTQZSEkuJJENS4EuZrKNczqmsVu3UShPztTtcyALbZrY7LFeUcHusSlWKTZvHtb8yPlSlANpHvY43dkuiTEsbMTTUW7llk2VZSluhUrMSslOuFMSBJiaKvC7XSZyUqqa5rqveXqNSNc18JKM9T8cKgkSOLZ15UV59K3JTn8WnE7s69b0sAAAAAKB+mh52+/CHP1y5vHz5cv3ud7/T1q1btXXrVr34xS/W0UcfrXw+v6CWIYZh6O/+7u8aMV0AQB0stTZZnaqcEBGGhjxP2j0cauutngYKBc1cvHXTDSM65ZWGzl+b0UC/rVzOkOu68jyPoDKay3IVrlwz57ZmMwxDhgzRbKr1ujFBtdTu0Km0O9x2R+1tC5vd7tD3/amqj8ZUVQpTW2+dlFFQ1euMZUlrTnO0rvI6Uzp56XlUpQBaqR7Hm3S6gRPsQsTQ0EhRFMkv+oqLhar3uxMjI1ReboBy1TTXddXXaylKSUnW0EC/VUmGDw4zlclqKsE2kueR2AUAAAAAKGl6ctfNN99cFXQyDKNSDvSXv/ylnnrqqQWNlyQJgSkAaEOWZSnd0yN71vL9fF+fAstVscgq4GYrJ0SMedKOnZO65tpxWUmg/pOrt4siadsdgXbuCnT5+qyGVqfU2zud4AV0A8uylE65SqUzVben8nkFSYpjWAt0a4JqsVhULudU2h3u3BWoljyt2e0OJyYa3+4wjvdTlWJGAh5VKYD2VK/jDeqHGBqaJUkSFjI0wXxV08rP8SRJqJoGAAAAANgns9UTkKaqIUx9AQA6m2maU1U7cjJNR1EkRaEUhqXv475kms6MbdripWjJsyxLlmXJn5CGh0Ndc+34AU/WBYG0afO4dg+H8iemx1gy7KwKgxurvlihjtnHsMlAKhalQrH0nWNY68xMUN2+c1IbrxjT9h1BVWKXNJ2guvGKMe3YNSnPk6KolODViabbHarS7tBx9r9PK9sdlqtSGEakvl4pn5eyWUMD/baOHbQ10G/r0MNM5fNSX69kGJE8z+vYymrAUlKv4w0aixga0PnKrcOLxenk+8nJSY2MjMj3fY6lAAAAAIA5ml65S1JllSEAYGmZ0y7Lk7KB5HmxoliyTGns2Vh9WjrtsjpFOp1WFElhIG25pVBTFQaplOB18y0FbfhATlFUGsf3aZuFpemgW/5NPtfqqS955eTS0bHqBFVrP59mygmqV19lanDQVl9vaYxOPFnWae0O56tKMRNVKYD2tdjjzfj4hJwDZYRhQYihAd2B5zoAAAAAYH+antz1wx/+sNl3CQBogvnaZX33tnGdlw+rmjtc+fVRHb8qt2TaZXUKx3E0XpT2jsTavqPGzK4pd+4INDISK50xlXU5WYelaXEt/3qUzGiThPrr9gTVTm13GEWR/KKvuFgoVZmRoUSJJkZGqJQItKlOPd4sVcTQAAAAAAAAILUgueuFL3xhs+8SANAEM9tl7dg5qWuuHVfWCvTmc6q3i6faZe3cFejy9VkNrU6pt3c6wQv1V27ZEoXSvfcFWmiRlCiS7rkv0LlnpyWVkmA4cYelZr5jmJUE6j+5ertovmOYY8g2TSoQNZDjOBr3uztBtdzu0HVd9fVailJSPNXuMJFkSAoOM5XJlirqRFEkz2ufRIskSZSoTgmQU211ATTGYo43tAqsL2JoAAAAAIClZuYiUAC1M1s9AQBA5yu3y/Inqttl7U+5Xdbu4VD+xPQYqD9DpZNsSSL5/sG9Wfb9pFK9iJN2WGrqcQwzDIPnRoOYZukjy2ITVKOwerxOVG53WKp2GSjlSOm0lEmXvmddKY6DGdu0R2IXgM7D8QYAAAAAANSLZVlyXVeZdEbpVFqpVErpVFr5fF6u63J+EKhB0yt3AQCWnm5vl9XuyqsfDENy3YNLPnFdQ+W8FVrPYalZ9DHsvaXkSZPqXQ1RTpojQXUa7Q4BNAvHGwAAAHS6tq8QY7kKV66ZcxsALAWmaVaSt6LiuCYDKYk1XRnclzJZR7mcU4pB+O3TiQBoNyR3AQAWzXEcjRe7u11WOysnY1m2dMoqZ6p9Tu37W5Z06ipH1tS7Bt5YY6lZbMu/sT+JtSyWLKvzk4baUfkYRoLq/Ora7hAA9oPjDQAAADqFZVlKp1yl0pmq21P5vIIkpWKxyAI9AGgw27bluq6iyNDomBROSOZ4oj17IgWh5NhSelms/ArJdiS3x1Iul5Pv+wrDsNXTB9oOyV0AgEUpV0BZbLusc89OSypl8ZM8VH9BECiTlpblTZ0+5GjbHbUnsJwx5CifN5VJl8YBlpJ6tPx74KFAL54qXmIYxpJLHmq18msCCaoAAAAAAGB/qBADAO2hfDwOQ0OeJ+0eDrX1Vk8DhYJmhs9vumFEp7zS0PlrMxrot5XLGXJdV57ncXwGZiG5CwCwKIZol9UJisWicj2l1Q/nr81o566gptZzKUdatzYj2yklSExMFBs/WaCJ6tHyb6KQKKEzVUOVElQdElQBAABQP3ZWhcGNrZ4FAKBOqBADAO2jfDwe86QdOyd1zbXjspJA/SdXbxdF0rY7Au3cFejy9VkNrU6pt3c6wQvAtLZJ7vrd736nJ554QqOjoxobG1twxYO1a9c2ZmIAgP0qt2ahXVZ7i6JIURTJ7bE00G/r8vVZbdo8rv111nEcacP6rAb6bbk902MAS0k9Wv71ZMpprmiUYrGoXM4hQRUAABFDA1AHJLYBWGKoEAMA7cOyLFmWpdExaXg41DXXjisIVOmsMJ8gkDZtHtfVV5kaHLTV11sag3NSwLSWJnc9//zz+vrXv66tW7fql7/85aLGIjAFAK1RPpFAu6z25/u+crmccjlDQ6tTuvoqU1tvnZRRUFWQw7KkNac5WlcJckiWlcjz/NZNHmiQerT8O+lER3qydJ0E1cYgQRUA0O2IoQEAAOwbFWIAoH2k02lFkRQG0pZbCjUt0pVKCV4331LQhg/kFEWlcXyf81JAWcuSu773ve/pIx/5iMbHxw/6JJhhGEqShBZeANBipXZZol1Wm4vjWL7vy3Vd9fYaGhy0ddklOZmPZKrKk595UV59K3JT5clLiV2+75N4hyVrsS3/evsCmSaJXY1GgioAoFsRQwMAANg3KsQAQHtxHEfjvrR3JNb2HQs773fnjkAjI7HSGVNZ12nQDIHO1JLkrttuu00f+tCH5g1IzQwyzf757J9xAg0A2kOxWFSuR7TL6gBhGMrzPLmuq75eS1FKirOGBvptJZIMScFhpjJZTVUwiuR5JHZhaVt0yz/bl2FIUcTzpJFIUAUAdCNiaAAAAPtHhRgAaB+maUqSolC6975gQV0ypFKFxXvuC3Tu2enKeMR1gZKmJ3c99dRT+pu/+ZvKasEkSfSyl71Mf/AHf6B0Oq1NmzZJKgWhPvnJT8rzPD3zzDO65557dPfddyuOYxmGoZUrV+q9732vstlssx8CAGCWfbbL2g/aZbVOHMfyPE+WZSlthUrNWvyQcqUgDjQxUeRvgq6w6JZ/DidNm4UEVQBANyGGBmBJsrMqDG5s9SwALCFUiAGA9lFeaJQkku8fXLzc95NKpwaqTwPTmp7cdf3116tQKFSeiJdeeqkuueQSGYahX/3qV5XAlCStW7euat8nn3xSf//3f68f/OAHev7553XjjTfqy1/+sg477LCmPgYAwFzztcv67m17Zag6P8K0pDWvpl1WO4iiSH7RV1wsvS4bMpQo0cTIiGRz4gfdZVEt/8KkYclDM5+bKCFBFQDQLYihAQAA7B8VYgCgvZQXQBuG5LoHl5jluobKOV0sqAamNTW5K45j3XbbbZWg1Bve8AZdeumlNe//kpe8RNddd50+85nP6J/+6Z/0+OOP6y/+4i904403ynHIqAeAVpqvXVb/xVll77blebGiWLJMafOn+9R7KO2y2k2SJCSPoKstquXf6IQydfyQaVmW0ilXqXSm6vZUPq8gSalYJGlJIkEVALC0EUMDOpTlKly5Zs5tAIDGoEIMALSX8rk+y5ZOWeVMdVeofX/Lkk5d5ciyq8cDIJnNvLNHHnlE4+PjlQzLSy655KDGueyyy3TuuecqSRL97Gc/0//9v/+3ntME0CCGYcg0TD4gLWHldlmGEamvV8r3lVqXLV9mauUKU8uXmTrkUFP5vNTXKxlGJM/zFIZhq6cOAHOPYXkpO9Xy79hBWwP9tg49bJ5jWFSfY5hpmlPVw3IyTUeTgVQsSoVi6fu4L5mmM2Obpr6Vb2tJkihOYlZyAQCWDGJoANBBplpNzvxiwQnQHFSIAYD2EwSBMmlpWd7U6UMLW1x0xpCjfN5UJl0aB8C0pp4RevTRRyWVEjyOOOIIHXPMMfvdfn9vojZs2FC5/I1vfKM+EwRQd5ZlyXVdZdIZpVNppVIppVNp5fN5ua4ry7JaPUXUWbldlud5iuNAllXK0Lft0vesK8VxMGMbsu4BtI/Zx7CUI6XTUiZd+t6oY5ht28rlckoSS6Nj0siIND6eaPdwqEcfC7V7ONQzz8QaGZFGx6QksZTL5WTbTe+yDgAAmoAYGgAAwIHNVyFmIagQAwD1VywWZVmS7Ujnr82o1uLRKUdatzYj2ykdn4vFYmMnCnSYpiZ3jYyMVC4PDg7O+fnsaj77e8IODAzo6KOPVpIkGh4e1mOPPVa/iQJYNKqPIIoi+RMTCsNQURRVvkZGR+X7Pi3FALS1KIrk+74KxYKKk0VNTk6qOFnUyMhI3Y9hpmnKdV2FoaGxMemxx0J95rOebvtWQTt2Bbr7nkA7dgW69P0j2nStp8ceCzU2JoWhIdd1eQ0FAGAJIoYGAABQGyrEAEB7KZ8PdHukgX5bl6/PHjDBy3GkDeuzGui35fZMjwFgWlPPBI2Pj1cu9/X1zfl5T0/PPrefz0tf+tLK5SeeeGJxkwNQN1QfwWxJklS+AKDTNLrln+u6iiJDY560feekNl4xpu07As2+uyiStt0RaOMVY9qxa1KeJ0VRKcELAAAsLcTQAAAAakOFGABoP77vy7IS5XLS0OqUrr6qV6cPOZq1TkmWJa15taOrr+rV0OqUcjnJshL5vt+aiQNtrKmZFDMDT2EYzvl5Nlvdh/7pp5/WypUr9znezBNZv/3tb+sww8X5zW9+owceeEC//vWv5fu+0um0DjnkEPX39+u4445TKpU6qHF/+ctf6uGHH9aePXsUx7EOP/xwDQ4O6thjj63zIwAWb2b1Ec+Tdg+H2nqrp4FCoeok9U03jOiUVxo6f21GA/22crnSyWna9C1Ns1eVAwBKLMuSZZWSoYeHQ11z7biCQJV2APMJAmnT5nFdfZWpwUFbfb0WbY4BAFhilnoMDQAAoF6mK8RYlQoxmzaPS/tZo0eFGABorDiO5fu+XNdVb6+hwUFbl12Sk/lIRnv2RApCybGlMy/Kq29FTrYjuT3TiV2cKwbmampy1/LlyyuXPc+b8/NUKqXly5frd7/7nSTp0Ucf1QknnLDP8Z599tnK5VZlb8ZxrNtuu01f/epX9dBDD+1zO8dxdOqpp+qiiy7S7//+79c09n/+53/qc5/7nO655555f/6yl71MF154od7ylrcc1NyBejEMQ4YMJUqqqo/s2Dmpa64dl5UE6j+5ep9y9ZGduwJdvj6rodUp9fZOJ3ih81mWpXRPz5yKbPm+PgWWq2KxyAdmAF0vnU4riqQwkLbcUlCtHQCCQLr5loI2fCCnKNJBLyIAAADtaSnG0AAAABrF933lcjnlcsZUhRhTW2+dlFFQ1aJzy5LWnOZoXWXReSmRwPN4fwQA9RaGoTzPk+u66uu1FKWkOGtooN9WIsmQFBxmKpMtHZ+jKJLnkdgF7EtTk7v6+/srl5988sl5tznmmGO0a9cuSdL27du1du3aebfzfV/3339/5fp8Jeob7b//+791+eWX69577z3gtkEQaOfOnVq1atUBk7uSJNHf/d3f6atf/ep+t3vkkUf013/91/rRj36kq6++mpN6aCrLspROuUqlM9U/sG1NJoaefXZx1UdI+ulc5eptlmUpGvcVRZISVd6oTfhSJu8ol3MURREZ+AC6muM4GvelvSOxtu+oMbNryp07Ao2MxEpnTGXdGnsOAJhf5Mt+7ifSVFK6HYbSUe+W7OwBdgSAxlhqMTQAAIBG6ugKMXZWhcGNrbt/AItnuQpXrpGdKZ0zDQsFyXIPsFN3iONYnueVzitboVKzwtgpVwriQBMTFIQADsRs5p0dffTRsixLSZLov//7vzUxMTFnm1e96lWSSglO3/3ud/WrX/1q3rG++MUvVq00POaYYxoz6X147LHH9I53vKMqscswDK1atUpvf/vb9b73vU/vec979KY3vUkvfvGLFzT2pk2b5iR2veIVr9Cf//mf693vfrd+7/d+r6rF2be//W1dccUVi3o8QK1M05xaAZOTaTqaDKRiUSoUpeKkND6eyDSkFx5p6e+v7tNA/4HbRJWrj4RBqaJXOp1uwiNBI9i2rVwupyQptRgbGS39fX+3N9Zzz8f63d5Yzz4ba2REGh2TksRSLpebU90LALqBaZbeikehdO99gRb62TWKpHvuCxTN7dQEAAA63FKKoQEAADRDuUKMYUTq65XyeSk7VSHm2EFbA/22Dj3MVD4v9fVKhhHJ87x5W2ADAOqrXOyhUCyoOFnU5OSkipNFjYyMyPd9EruAGjT1bHo2m9UJJ5ygBx54QEmS6M4779TZZ59dtc2b3vQmfe5zn5NhGCoUCnr3u9+tT3ziE1q9erUkaWxsTF/60pf0hS98QYZhKEkS5fN5rVq1qmmP4/nnn9eFF15YVdL+3HPP1Yc//GG96EUvmnefRx99VFu2bFFvb+9+x/6P//gP/fM//3Plel9fnz7zmc/ojDPOqNru4Ycf1nvf+17t2bNHknTbbbfpla98pd7xjncc7MMCDsi27UrbxdExKZyQzPFkxsoXQ+l8rPyKREkivfjFlj7x8V5t3nTgksZUH+l85YpdYWjI86Tdw6G+e9u4zsuHmlH5Wld+fVTHr8rp/Erp6+l2nFTwAtBNysn6SSL5fnKArefn+0lVewEAALA0LJUYGgAAWAAqOC0aFWIAoP0lSaJEBLWBhWp6qZQ1a9bogQcekCTdfvvtcwJTg4ODOuecc/TDH/5QhmHoySef1J/92Z+pp6dHuVxOzz//fOUNV5IkMgxD//N//k85TvOSQa666qpKUpUk/cVf/IXWr1+/332OPfZYbdy4/zflSZLommuuqVw3DEP/9E//VAnKzXTCCSfohhtu0Fvf+lYVi0VJ0nXXXae1a9cqk8nM2R5YrPkSd7be6mmgUKicVDZk6MYbRvXyk02tW5vWMcfYSqcNbfhATru+aup3e/eduFOuPnLu2enK/ZHo01nKiX9jnrRj56SuuXZcWSvQm8+p3i6OpG13BNq5K9Dl67MaWp1Sb+90ghcAdItk6gXUMCTXNQ6w9fxc15BxcLsCAIA2txRiaAAAAK0QRZH8oq+4WJBhGDJkKFGiiZERyc62enoAAAAL1tS2jFJpVaFUCip9+9vf1tjY2JxtrrjiCh1yyCGSVFlZ6Pu+nnnmGYVhWAlISdLLX/5yXXzxxU2b/x133KFvfetblevnnHPOARO7avWDH/xAjz76aOX6W9/61nkTu8r6+/v1nve8p3L92Wef1b/927/VZS7AbDMTd7bvnNTGK8a0fUcwp1pIFEk//q9JXXLZmLbdMakkkVIpQ0OnHTh4PLP6iMGZ6o5iWZYsy5I/IQ0Ph7rm2nEFwf73CQJp0+Zx7R4O5U9MjwEA3aKcxGzZ0imrHC30EGhZ0qmrHFl0tgUAYEnq9BgaAABAO0iSRHESVxbZAQAAdKKmnwoaHBzUli1bKiezTHNuftmRRx6pr3zlK1q/fn1VstN065pESZLoNa95jTZt2tTUFYdf/OIXK5cdx9GHP/zhuo393e9+t+r6n/zJnxxwn3e84x36whe+UFmJ+d3vfld/+qd/Wrc5AdJ00s3oWHXizr5OJhuGoSBI9PFPjOuznzE12C/l+0wddqipZ57ddzWumdVH+KDVWdLptKJICgNpyy2FAyZ2lQWBdPMtBW34QE5RVBrH9w/cxhMHQAl3oGMEQaBM2tGyvKnThxxtu6PGA6ikM4Yc5fOmMunSOOl0uoEzBQAAzdbpMbQlic9aAAAAAACgBVqyzv+EE0444DZHH320br75Zn3ve9/TD3/4Qz355JMaHR1VPp/Xcccdpze+8Y0644wzmjDbaU899ZS2b99euX7mmWfqxS9+cV3GDsNQP/7xjyvXjzjiCJ188skH3O/www/XKaecorvuukuSdM899+j555/XihUr6jIvQFpY4o4hyXZKLaaCQPp/Nxb0vz5UCiofc7StZ56dnHe/2dVHaMnYWRzH0XhR2jsSa/uO2hMTJOnOHYFGRmKlM6ayLicaAHSXYrGoXM6R7Ujnr81o566gpgTZlCOtW5uR7ZReQwuFSZK7AABYgjo1hgYAAAAAAID6aesmLpZl6Y1vfKPe+MY3tnoqkqTvfOc7VdWE/vAP/7BuYz/66KMaHR2tXD/11FNr3vfUU0+tJHdFUaS7775b5557bt3mBjiOo3H/wIk7iUpJXaYpOY40OSn9108CjVxsKyvpRS80ZdtSGM7dd3b1EXSO8orwKJTuvS/QVCHBmkWRdM99gc49u5SUYJomyX0AukYURYqiSG6PpYF+W5evz2rT5vHSi+o+OI60YX1WA/223J7pMQAAQPdqtxgaAAAAAAAA6mduPXfs07333lt1/VWvelXdxn7iiSeqrh9//PE17zt7Fefu3bvrMidAmm77UFvizvSZ6J5MqcViGEp33VNK1jIMQ26PMWev2dVHisViPR8CGsxQud2H5PsH107T9xOVc2fLyWIA0C1835dlJcrlpKHVKV19Va9OH3I0+3BoWdKaVzu6+qpeDa1OKZeTLCuhnS0AAAAAAAAAAMAS1taVu9rNgw8+WLl8+OGH67DDDpMkPfnkk9qyZYt+8pOf6De/+Y0mJia0fPly9ff36/d+7/f01re+VStXrtzv2LMTso488sia53XEEUfsdyxgMcqJNgtJ3DEMybKlXNaQN55U7Wc7hmYmgVF9pPMlU39Pw5Bc9+ASs1zXqCQxzKyQCADdII5j+b4v13XV22tocNDWZZfkZD6S0Z49kYJQcmzpzIvy6luRk+1Ibs90YlccxyTGAgAAAO3AzqowuLHVswAAAAAALDEkd9VobGxMzzzzTOX6i1/8YoVhqM9//vP63Oc+p3BWnznf9/WrX/1KP/nJT/SP//iPuvDCC/W+971vnyfenn766arrL3jBC2qe2+xt9+zZU/O+wIGUE21qTdxJkqRUx8mQnJTUZxrK5ab3C4PSeJYlrTnN0bq1GQ3025XqI55H9ZFOU/4fsWzplFWOLEsLas1oWdKpqxxZU69ItGQE0I3CMJTneXJdV329lqKUFGcNDfTbpbbHkoLDTGWymjrORvI8n2MmAAAAAAAAgKWJxHkAqGir5K49e/boqaee0sjIiDzPkyStXbu2tZOasnfv3qrrhxxyiD7ykY/o1ltvPeC+vu/rM5/5jH7+859r8+bNsu25v/bZ7XSy2WzNc5u97cG05umaag+GUWkhN32ToTl9jzTPdppvuxar+fEcvHLijl1j4k4ytU9pHlIqLb3qFY7sUck0pGMHbVnWvquPVPY9kIY99hr/9lOPb8ZGdf/d71cT/vYLue8gCJRJS8vypk4fcrTtjqDm4c4YcpTPm8qkS+O05HjUyt9nq7X4sc/8ey+J16Ju/l9qhFb/Ppv8viFJEo2Pj8uyLKXMQCmn+ucpVwriQIXCZKXKZfl5s+SeS7Vq9f9IK3XKY++UeWqe93bt+P6/1Trm74m6WsDfvWtfj1qg3WJo/L1nI65U9/tv9VzrrdVxpY7RIc+lbkZcCe2s1a8dbRbD3999d+1zqdX/I63UzY+9EXhvVxv+77qTk1Px2A9X3bSvv3jXvh7VqOXJXb/61a90ww036Pbbb9evf/3rOT+fLzD105/+VNu3b5ck5fN5/emf/mmjp6mxsbGq69u2bavclslk9M53vlNvetOb9JKXvERBEOiRRx7RTTfdpNtuu62SHPO9731P11xzjT74wQ/OGX92QlYqlap5bul0er9j1WLZsmUL3qcjhY6UyVTdlFm2TLJnJdMVJkvZTDMsW5aXMssaO7+FqvXx1EEmk2hZ3tQZp6d0x52lxB3TNOYcWE3TkGFOnWiW9OozHPX1SbZfau04eIwtGVJ4uKlM1pBtT+/f29tb+4Qa9dhr/duHjpSevv9MOtOw3/28mvi3r+W+lU5LtinHiXX+2h799K5QQSAZ5uy3aaXbzKn/kZQjrVvbI8eRHMeUlJ5zTGuKVv4+W62NHns+n2/6fdZdG/0+l4RW/z5b+b4hHJ/zodYwTaXtAx8nl8RzqVat/h9ppU557J0yz8KkKmVEJdmW3Z7v/1utU/6eqK+D/Lt31etRk7RzDK1r4kq1Iq5U//tv9VzrrdVxpU7RKc+lbtZGz03ee2COVv9/tlkMv9b77qrnUqv/R1qpmx97I/Derjb832EBuur1qEYtS+6K41j/8A//oC9/+cuKoqiSADXTvrLxli9fruuuu67y8zPPPFNHHXVUQ+c7O2GqnNi1bNky3XDDDTr++OMrP8tkMnrVq16lV73qVVqzZo0+9KEPVVrmXH/99XrLW96i4447rmq8YrFYdX0hyV2zty0UCjXvC9TKtg05TqJ1b81o108DBTUUZko50tq3ZOQ4BVlTyTy2NfXDrCnZZNwuNa5raKDf0ob3Z3XNP4zvd1vHkda/P6uBfqumlp8AAAAA0I06LYYGAAAAAACA+mpJclcQBLr44ot15513ztuCzTCMeQNVZUcffbSGhoa0Y8cOGYahrVu36pJLLmnonPeVbPXxj3+8KrFrtre85S168MEH9ZWvfEVSqd3O9ddfr09/+tNV282uwDA5OVnz3GZvm5ldUacGs9tOLlnhuDKzkt8Ke/dK9qxMpcKIcmFYdZO3d0TK1J501xS1Pp46yGaz6umxNNBvaf37XW3aPK44TuY8V+M4URwnchzpA1OJOz09UhRHCoOwVM4rkSYWO89GPfZa//bhuDLFgjJTmfiFYqFhv/t5NfFvX+t9m6lI2WxWuZyh01Y7+ru/zem7t/1OUqldZ5lhJHr16bbWrc1ooN9WLieZZqzR0fFKImzTtfL32WotfuyGYVSy70dGRvb7+t8Ruvl/qRFa/fts5fuGBT72JfdcqlWr/0daqVMee6fMszCiXBTKnqreFUZhe77/b7VO+Xuivhbwd19qr0ftUI2qU2JoXRNXqhVxpfrff6vnWm+tjit1ik55LnUz4kpoZ61+7WjDGD5xpVla/T/SSt382OvENE319PTIsixFQaxkMlGcqHJCLPRipbOxLEuKokgTExOtOwfWLvi/wwEstdejeseVWpLcdcUVV+iOO+6QYRiVINSrXvUqDQ0NyXEcXXvttQcc43Wve5127NghqdQisdHJXdns3HKARx99tF7/+tcfcN+LLrpIX//61xVMlTr60Y9+pDiOZZpmZRvXdav2WUhy1+yqX7PHqkWnPzFqliRKlMy6KSn1C6y+de52mm+7Fqv58Sye7/vK5XLK5QwNrU7p6qtMbb11Ukah+u4sS1pzmlOVuGMpURAEU3Or0zwb9thr/NvPeCxTGzXsdz+vJv7ta73vKIrk+75c11Vvr6HBQVv9F2eVvduW58WKYskypc2f7lPvoTnZjuT2SJaVyPd9RVHU+LnvSyt/n63WRo89SeYmjHacNvp9Lgmt/n228n3DIh77kngu1arV/yOt1CmPvVPmqXne27Xj+/9W65i/J+rqIP/uXfV61ECdEkPjbz0bcaW633+r51pvrY4rdYwOeS51szZ6bvLeA3O0+v+zDWP4xJVmafX/SCtZriYGPzT39m547HVg27Zc11UUGRodk8IJyRxPtOfpWEGQyLGl9LJY+RWaOhdmKZvNyvd9hbMS17tKNz/nsGBd9XpUo6Ynd91555267bbbKgGpl7zkJfo//+f/6KSTTpIk/epXv6opMHXWWWfpb//2b5UkiR544AEVi8U51a/qab7krte+9rU17XvIIYfo5JNP1l133SWplGX4+OOP69hjj61sMzsha3x8/+3M9rftwSR3AQcSx/GcxJ3LLsnJfCSjPXsiBaHk2NKZF+XVt2JW4s6oL5uDb1cIw1Ce58l1XfX1WopMyXCk5ctMJSoVbsscaiqTV2W1guf5rFYAAAAAgFk6NYYGAAAAAEuVaZpyXVdhaMjzpN3Dobbe6mmgUFDpLFgpKeWmG0Z0yisNnV8phmHIdV15nsc5MQAHxTzwJvV13XXXSSod1I488kj9v//3/ypBqYV44QtfqL6+PkmlZILdu3fXdZ6zrVy5Uo7jVN02ODhY8/4zE7kk6emnn666fvjhh1dd37NnT81j/+Y3v6m6/oIXvKDmfYGFKCfuGEakvl4pn5eyWUMD/baOHbQ10G/r0MNM5fNSX69kGJE8z+vuLPQuFMexPM+beoMayLIky5Zsu/Q960pxHMzYhjexAAAAADBbp8bQAAAAAGCpKlfsGvOk7TsntfGKMW3fEcwpPhVF0rY7Am28Ykw7dk3K86QoMijSAuCgNTW5a+/evbrnnnsqpeSvuOIKrVix4qDHO/rooyuXh4eH6zHFfXIcR0cddVTVbeV+n7WYve3IyEjV9ZmPRZJ+/etf1zz27ESwgYGBmvcFFmp24k7KkdJpKZMufSdxB2VRFMmfmFAYhoqiqPI1Mjra+jaMAFBPlqtw5ZqqL1l8SAcAAAevk2NoAAAAALAUWZYly7LkT0jDw6GuuXZcQbD/fYJA2rR5XLuHQ/kT02MAwEI1NbnrrrvuUhzHSpJEK1as0DnnnLOo8ZYvX165/Pzzzy92egd0zDHHVF2fnJysed/Z284ufz87uevhhx+ueeyHHnqo6jrJXWiGKIrk+74KxYKKk0VNTk6qOFnUyMgIiTuYo9wXmd7IAAAAAHBgnR5DAwAAAIClJp1OK4qkMJC23FI4YGJXWRBIN99SUBiUKnrNzhMAgFo0Nbnr2WeflSQZhqGXv/zlix4vm81WLvu+v+jxDuS0006ruj67teL+zK6uNTOoJpVaPJZL5EvSvffeW/PY99xzT+WyZVl6xSteUfO+QD0kSaI4iUncAQAAALqAYRgyDVOGYbR6KsCS1ekxNAAAAABYahzHUaEo7R2JtX1HjZldU+7cEWhkJFahWBoHABaqqcldM1sRzkxkOljFYrFy2bbtRY93IOeee25V8Pruu++uab8kSaqStSzL0nHHHVe1jW3bes1rXlO5/pvf/Eb33XffAcd++umnq7Y79dRTF1WmHwAAAACA2SzLkuu6yqQzSqfSSqVSSqfSyufzcl2XlgJAnXV6DA0A0CXsrAqDG6u+ZGcPvB8AAB3GNEtpFVEo3XtfoIU2MIoi6Z77AkVh9XgAUKumHjVyuVzl8vj4+KLH++1vf1u5nM/nFz3egbzgBS+oqop1++2311TK/ic/+Yl+/etfV66ffPLJVb+Lsje+8Y1V17/+9a8fcOx//dd/rWp/94Y3vOGA+wAAAAAAUAvTNJXL5ZTL5WSajiYDqViUCsXS93FfMk1nxjYEJ4F66PQYGgAAAAAsJeUCMEki+f7BdTLy/UTlJkhUQwewUE2Nus5sRfjkk08uaqwoivSzn/2scv3QQw9d1Hi1+su//MvK5WKxqL/927/d7/bj4+O66qqrqm770z/903m3Peecc3TsscdWrt96663atWvXPsceHh7Wl7/85cr1Qw89VH/0R3+03/kAAAAAAFAL27aVy+WUJJZGx6SREWl8PNHu4VCPPhZq93CoZ56JNTIijY5JSWIpl8tRFQiog6UQQwMAAACApSKZysoyDMl1Dy4xy3UNlXO6yuMBQK2amtz1spe9TFLpYDU8PKw9e/Yc9Fg//vGPNTExIamU2XrKKafUY4oHdMYZZ+iss86qXP/Od76jD33oQxobG5uz7S9/+Uu9613v0vDwcOW2k046aU6FrjLDMLRhw4bK9SRJ9L73vU933nnnnG0ffvhhvfOd76wqq3/ppZcqk8kczMMCAAAAAKDCNE25rqswNDQ2Jj32WKjPfNbTbd8qaMeuQHffE2jHrkCXvn9Em6719NhjocbGpDA05LouFbyARVoKMTQAAACgrdFaFgsQx7EkybKlU1Y5sqyF7W9Z0qmrHFl29XgAUKumLqc9+uijdfjhh+vpp59WkiS6/vrr9ZGPfGTB48RxrC984QuSSkGp4447Tn19ffWe7j59+tOf1tvf/vZK0tYtt9yiH/7wh/r93/99HXXUUQqCQI8++qi2b9+uIAgq+61YsUKf+cxn9hvkfu1rX6v/7//7//TP//zPkqTR0VG9853v1Cte8QqdfPLJMk1TjzzyiO64446qjN63vOUtesc73tGgRwwAAAAA6Cau6yqKDI150o6dk7rm2nFZSaD+k6u3iyJp2x2Bdu4KdPn6rIZWp9TbW0rw8jyvNZMHloClEkMDgEWxXIUr18y5DQA6wlTiEIClIwgCZdKOluVNnT7kaNsdwYF3mnLGkKN83lQmrar8AQCoVdOX0p533nmSSisPv/a1r2nbtm0LHuOaa67RvffeW7ne7FaE+XxeX/rSl3TiiSdWbhsbG9N3vvMdff7zn9eXv/xl/dd//VfVgXlgYEA33nijjjzyyAOOv2HDhjmtG++++27dcMMNuv7667Vt27aqxK43velN+sQnPlGHRwYAAAAA6HaWZcmyLPkT0vBwqGuuHdeB4o5BIG3aPK7dw6H8iekxABy8pRBDAwAAAIClolgsyrIk25HOX5uR49S2X8qR1q3NyHZKFbxmduYCgFo1PbnrwgsvVC6Xk2EYiqJI73vf+3TjjTfWtO/zzz+vjRs36stf/rKMqYa0hxxyiC644IJGTnleL3rRi3TjjTdqw4YNeuELX7jP7Q477DD99V//tW6++WYdddRRNY1tmqY++tGP6otf/OJ+S+Ufe+yx+vSnP63NmzcrnU4v9CEAAAAAADBHOp1WFElhIG25pXDAxK6yIJBuvqWgMChV9OJzKrA4SyWGBgAAAABLQRRFiqJIbo800G/r8vXZAyZ4OY60YX1WA/223J7pMQBgoZrallGSli1bpo9+9KPauHGjDMNQsVjUxz72MX35y1/W61//eh122GFV299///3avXu3tm3bpttvv12+71eqVlmWpU9+8pNKpVLNfhiSJMdxdPHFF+uiiy7SAw88oOHhYT377LMyDEMrVqzQ8ccfr+OOO+6gxz/zzDN15pln6sknn9RDDz2kZ555RlEU6fDDD9fg4KBe9rKX1fHRAAAAAABQ+qw77kt7R2Jt37GwVgF37gg0MhIrnTGVdWtcwgpgXksphgbMi3ZVAAAA6DC+7yuXyymXMzS0OqWrrzK19dZJGYXq7SxLWnOao3VrMxrot5XLSZaVyPP81kwcQMdrenKXJK1du1ZPPvmkPve5z8kwDCVJol/+8pf60pe+VLVdkiR6+9vfXnXdMIzKPhs2bNCaNWuaPf05DMPQySefrJNPPrkh47/kJS/RS17ykoaMDXQsAoAAAACoF8tVuHKN7ExGkhQWCpLltnhSrWGapQLfUSjde1+ghS4mjSLpnvsCnXt2ujJeHMf1nibQNZZaDA0AAAAAOlkcx/J9X67rqrfX0OCgrcsuycl8JKM9T8cKgkSOLZ15UV59K3KyHcntKSV2+b5PjATAQWtJcpckvf/979dRRx2lK6+8UoVCoVIivhx8KiuvMJwZkEqlUvr4xz+utWvXtmLqAAAAAAAsSdOfzSXfTw5qDN9PNPVRvurzPYCDQwytA00lDc++DQAAAEDnC8NQnufJdV319VqKUlKSNTTQb0lT8ZDgMFOZbKmCVxRF8jwSuwAsTsuSuyRp3bp1Ghoa0pe+9CVt2bJFhUKpXmE5GDVTkiSyLEvnnXeeLr30Ur3oRS9q9nTRhTgRgbZF5TIAAAA0wHRyiOS6B/d5yHUNlT9Kzff5HsDCEUMDAAAAgPYRx7E8z5NlWUpboVKOqhbipFwpiANNTBQVLbQsOgDMo6XJXZJ05JFH6m/+5m/013/917rrrrt01113ac+ePfrd736nIAi0fPlyHXLIITr11FN1xhlnqK+vr9VTxhJnWZbSPT2y7eqnR76vT4HlqljkRRgAAADA0lReRWrZ0imrnKkVprXvb1nSqascWXb1eAAWjxgaAAAAALSXKIrkF30lxaIymYwkaXJyUv7IiGRnWzw7AEtJy5O7ynp6erRmzRqtWbPmwBsDDWCaplzXlWVZisb90gmMpFQ905A04UuZvKNczim9UNMXGQAAAMASFASBMmlHy/KmTh9ytO2OoOZ9zxhylM+byqRL4wCoP2Jo6EpUMAcAoHa8bgItRRVzAI1gtnoCQDuwbVu5XE5JYml0TBoZlYJA+t3eWM89H+t3e2M9+2yskRFpdExKEku5XG5OdS8AAAAA6HTFYlGWJdmOdP7ajByntv1SjrRubUa2U6rgVSwWGztRAAAAAAAAAOgCZKag65UrdoWhIc+Tdg+H+u5t4zovH2pmXvWVXx/V8atyOn9tRgP9tnI5Q67ryvM8KngBAAAAWDKiKFIURXJ7LA3027p8fVabNo9L+1l46jjShvVZDfTbcnumxwCArkS1DAAAAAAAUEdU7kLXc11XUWRozJO275zUxivGtOunwZzzFnEkbbsj0MYrxrRj16Q8T4qiUoIXAAAAACwlvu/LshLlctLQ6pSuvqpXpw85Mozq7SxLWvNqR1df1auh1SnlcpJlJfJ9vzUTBwAAAAAAAIAlhspd6GqmYcqyLI1OSMPDoa65dlxBIMna9z5BIG3aPK6rrzI1OGirr9eSZVmsSgcAAACwZMRxLN/35bquensNDQ7auuySnMxHMtqzJ1IQSo4tnXlRXn0rcrIdye2ZTuyiujEAAFg0quABAAAAgCQqd6HLWbalKJLCQNpyS6GU2FWDIJBuvqWgMJCiSEqn042dKAAAAAA0WRiG8jxPhhGpr1fK56Vs1tBAv61jB20N9Ns69DBT+bzU1ysZRiTP8xSGYaunDgAAAAAAAABLRt0rd51zzjn1HvKADMPQD37wg6bfLzqfZVryitLekVjbd9SY2TXlzh2BRkZipTOmsq7ToBkCAAAAQOvEcSzP82RZltJWqNSsjz4pVwriQBMTRaoZAwtEDA0AAAAAAAC1qHty169+9SsZhqEkSeo99D4ZhtG0+8LSUf6/iULp3vsCLfQ8RBRJ99wX6NyzS1W7TNOk9QgAAACAJSmKIvlFX3GxIMMwZMhQokQTIyOSnW319ICORAwNAAAAAAAAtah7cldZs4JFzQyAYWkxVPofTRLJ9w/u/8j3E5X/BQmQAgAAAOgGSZIoEZ/FgXohhgYAAAAAAID9aVhyl0TQCO2tfDLCMCTXPbhAqusaKsdg+X8HAAAAACw5dlaFwY2tnsWSR0wBAAAAAAAA+9Kw5K4kSeQ4jl772tfqggsu0Mknn9youwIOSjlwatnSKascWZYW1JrRsqRTVzmypp5FtGQEAAAAAAALRQwNAAAAAAAA+9PQtoxhGOr73/++vv/97+uYY47RBRdcoLe85S1asWJFo+4WWJAojpRJS8vypk4fcrTtjqDmfc8YcpTPm8qkpSCofT8AALDEUNEEAAAsAjE0AAAAAAAA7I9Z7wE/8YlP6NRTT1WSJFVfjz32mD71qU/pNa95jS655BLdfvvtihZSJglogCiMZFmS7Ujnr83IcWrbL+VI69ZmZDulCl7FYrGxEwXQWFOJGTO/ZGdbPSsAAAAASxgxNAAAAAAAANSi7sldb3vb2/T1r39d3/3ud3XhhRfq0EMPrfp5GIa6/fbbdckll+jMM8/U3//93+uJJ56o9zSAmsRJrCiK5PZIA/22Ll+fPWCCl+NIG9ZnNdBvy+2RoigiyAoAQAMZhiHTMGUYRqunAgAAUDfE0AAAAAAAAFCLuid3lb30pS/VX/3VX+k///M/9fnPf15/8Ad/IMuyJKmyEvG3v/2trr/+er35zW/W29/+dt10003yPK9RUwLm5fu+LCtRLicNrU7p6qt6tfpVjmafPjYtac2rHV19Va+GVqeUy0mWlcj3/ZbMGwCApcyyLLmuq0w6o3QqrVQqpXQqrXw+L9d1K+8rga5F1UkAWDKIoQEAAAAAAGB/7EbfgWmaOuuss3TWWWfp+eef1y233KKbb75Zjz32WGWbJEl0//336/7779cnP/lJve51r9O6det0+umnN3p6gOI4lu/7cl1Xvb2GBgdt9V+cVfZuW54XK4oly5Q2f7pPvYfmZDuS2zOd2BXHcasfAgAAS4ZpmpXkrag4rslASmIpkWRICnwpk3WUyzmKoojXYgAAsGQQQwMAAAAAAMB8Gla5az4rVqzQu9/9bm3dulU33XST/sf/+B/K5XKSSsEpSZqYmNBtt92md73rXTrnnHP02c9+Vr/+9a+bOU10oTAM5XmeDCNSX6+U7yu1X1y+zNTKFaaWLzN1yKGm8nmpr1cyjEie5ykMw1ZPHQCAJcO2beVyOSWJpdExaWREGh9PtHs41KOPhdo9HOqZZ2KNjEijY1KSWMrlcrLthq9XAAAAaCpiaAAAAAAAAChr2Zmwk08+WSeffLKuuOIK/fu//7u2bNmiXbt2SZoOUv3qV7/Sddddp89+9rMaGhrS2972Nr3uda+T4zitmjaWsDiO5XmeLMtSOgmUmtXtKetKQRxoYqKoKIpaM0mgHUy1gQKAeipX7ApDQ54n7R4OtfVWTwOFgqbeGkqSbrphRKe80tD5azMa6LeVyxlyXVee51HBCwAALEnE0AAAAAAAALpbUyt3zSedTmvt2rX66le/qu9973u6+OKLdcQRR1R+niSJ4jjWnXfeqb/6q7/SAw880MLZohtEUSR/YkJhGCqKosrXyOiofN8nsQsAgAZwXVdRZGjMk7bvnNTGK8a0fUdQldglSVEkbbsj0MYrxrRj16Q8T4qiUoIXAADAUkYMDQAAAAAAoDu1PLlrphe/+MVav369br/9dv3zP/+z3vCGNyiVSskwjFZPDV0qSZLKFwAAaAzLsmRZlvwJaXg41DXXjisI9r9PEEibNo9r93Aof2J6DAAAgG5ADA0AAAAAAKB7tFVyV5lhGMpkMspkMpykAwAAWOLS6bSiSAoDacsthQMmdpUFgXTzLQWFQamiVzqdbuxEAQAA2gwxNAAAAAAAgKXPbvUEZtqzZ49uvvlm3XzzzXrqqadaPR0AAAA0geM4GvelvSOxtu+oMbNryp07Ao2MxEpnTGVdp0EzBAAAaC/E0AAAAAAAALpHy5O7Jicn9YMf/EDf/OY3tX37dsVxPKcFnmmaevWrX60LLrhAJ598cotmCgAAgHozzVIh2SiU7r0vUBQtbP8oku65L9C5Z6cr48VxXO9pAjhYdlaFwY2tngUALAnE0AAAAAAAALpTy5K7HnzwQX3zm9/Ud77zHY2OjkqSkiSRYRiVbV70ohdp3bp1Ov/883XEEUe0aqoAAAC1IYlhwcrv/ZJE8v3kAFvPz/cTlc9rznwvCQAAsBQQQwMAAAAAAOhuTU3uev7553Xbbbfpm9/8ph5//HFJ08Go8krDdDqt173udbrgggs0NDTUzOkBAACgycrvAQ1Dct2DS8xyXUPlc5uzq1cAAAB0ImJoAAAAAAAAKGt4clccx/rRj36kLVu26Ec/+pGiqV47M1cYJkmiVatW6YILLtCb3vQm5XK5Rk8LAAAAbaDcQtGypVNWObIsLag1o2VJp65yZNnV4wEAAHQaYmgAAAAAAACYT8OSu5544gl985vf1G233abnnntO0twVhitXrtR5552nt73tbTr66KMbNRUAAAC0sSAIlEk7WpY3dfqQo213BDXve8aQo3zeVCZdGgcAAKDTEEMDAAAAACx5dlaFwY2tngXQseqe3HXjjTdqy5Ytuv/++yXNbY1jWZZe85rX6IILLtBZZ50ly7LqPQWgbsorYwEAQOMUi0Xlco5sRzp/bUY7dwWqJU8r5Ujr1mZkO6UKXhMTxcZPFgAAoE6IoQEAAAAAAKAWdU/u+t//+39XrSwsO/roo3X++edr7dq1WrlyZb3vFqgby7KU7umRbVc/PfJ9fQosV8VisdIaAQAALF4URYqiSG6PpYF+W5evz2rT5nEp2fc+jiNtWJ/VQL8tt2d6DAAAgE5BDA0AAAAAAAC1aFhbRklyHEevfe1rdcEFF2jVqlWV2/fu3Vv3+1q2bFndx0R3MU1TruvKsixF476iSFJSOq9sSJrwpUzeUS7nKIoi+b6vOI5bPGvUneUqXLlmzm0AgMbyfV+5XE65nKGh1SldfZWprbdOyihIM893Wpa05jRH69ZmNNBvK5eTLCuR5/mtmzwAAMAiEUMDAAAAAADAvjQ0uSsMQ33/+9/X97///UbejQzD0MMPP9zQ+8DSZtu2XNdVFBkaHZNCT8oGkufFimLJMqWxZ2P1SbIdye2xlMvl5Pu+wjBs9fQBAOh4cRzL9325rqveXkODg7YuuyQn85GM9uyJFISSY0tnXpRX34rc1OtxKbGLhGsAANDpiKEBAAAAAABgXxqW3GUYhiTNKS0PtJtyxa4wNOR50u7hUN+9bVzn5cOqblBXfn1Ux6/K6fxKpRBDruvK8zxOKAMAUAdhGMrzPLmuq75eS1FKirOGBvrtSiXN4DBTmWypglcURfI8ErsAAEBnI4YGAAAAAACA/Wlo5S5pOkDVKAS+sFjlil1jnrRj56SuuXZcWSvQm8+p3i6OpG13BNq5K9Dl67MaWp1Sb+90ghcAAFi8OI7leZ4sy1LaCpVyqn+ecqUgDjQxUVQURa2ZJAAAQAMQQwMAAAAAAMB86p7cdeSRR9Z7SKBhTMOUZVkanZCGh0Ndc+24gkCSte99gkDatHlcV19lanDQVl+vJcuyOMEMAEAdRVEkv+grLhZkGIYMGUqUaGJkRLKzrZ4e2oWdVWFwY6tnAQDAQSGGBnQxO6vCsRuVWbZMklTYu1ciARMAAAAAsA91T+66/fbb6z0k0DCWbSmKpDCQttxSKCV21SAIpJtvKWjDB3KKIimdTsv3/cZOFgCALpUkiRJxogNA8zS6eg4ASMTQAAAAAAAAUBuz1RMAWskyLRWK0t6RWNt31JjZNeXOHYFGRmIVipLjOAfeAQAAAEDbsSxLrusqnU5XbkulUsrn83JdV5a1n7K+AAAAAAAAAAA0GMld6Frl1fhRKN17X6CFdlWMIume+wJFYem6afJ0AgAAADqFaZrK5XLK5XIyTUdBIBWKiQqFRMWiNO5LpunM2Ib3+wAAAAAAAACA5qt7W0agUxgqJXclieT7B9fqyfcTJVO70roFAAAA6Ay2bct1XUWRodExKZyQzPFEe56OFQSJHFtKL4uVXyHZjuT2WMrlcvJ9X2EYtnr6AAAAAIADsbMqDG5s9SwAAADqguQudK1Epawsw5Bc9+ASs1zXUDmnK0kOLkEMAAAAQPOYpinXdRWGhjxP2j0cauutngYKBamyACTRTTeM6JRXGjp/bUYD/bZyOUOu68rzPMVx3NoHAQAAAAAAAADoGvSVQNcqJ2NZtnTKKkeWtbD9LUs6dZUjaypFkhM8AAAAQPsrV+wa86TtOye18Yoxbd8RaPZajSiStt0RaOMVY9qxa1KeJ0VRKcELAAAAAAAAAIBmoXIXuloUR8qkpWV5U6cPOdp2R1DzvmcMOcrnTWXSUhDUvh8AAACA1rAsS5ZlaXRMGh4Odc214woCVRZszCcIpE2bx3X1VaYGB2319ZbGiKKoeRMHAKARaFcFAAAAAEBHoHIXuloURrIsyXak89dm5Di17ZdypHVrM7KdUgWvYrHY2IkCAAAAWLR0Oq0oksJA2nJLQbWu0QgC6eZbCgqDUkWvdDrd2IkCAAAAAAAAADCF5C50tTiJFUWR3B5poN/W5euzB0zwchxpw/qsBvptuT1SFEWs2gcAAAA6gOM4KhSlvSOxtu9YWPXdO3cEGhmJVSiWxgEAAAAAAAAAoBlI7kLX831flpUol5OGVqd09VW9Wv0qR8as7UxLWvNqR1df1auh1SnlcpJlJfJ9vyXzBgAAAFA70yx9/I1C6d77Ai10fUYUSffcFygKq8cDAAAAAAAAAKCR7FZPAGi1OI7l+75c11Vvr6HBQVv9F2eVvduW58WKYskypc2f7lPvoTnZjuT2TCd2xXHc6oeANmAYs9MBAQAA0E7K79eSRPL95KDG8P1ESVI9HgAAAAAAAAAAjURyFyApDEN5nifXddXXaykyJcORli8zlUgyJGUONZXJS5ZVasXoeSR2dSvLspROuUql05XbUqmUnHxeQZJSsVikVScAAECbSaaysgxDct2DS8xyXUPlnK7yeAAAAAAAAAAANBLJXcCUOI7leV4pcScJlLKqf551pSAONDFB4k63Mk1TruvKsixFxXEFgRQniTR1Xi/wpUzWUS7nKIoiKrsBAAC0kfL7MsuWTlnlTC3aqH1/y5JOXeXIsqvHAwAAAAAAAACgkUjuAmaJokh+cUJmGFa1WhkbHZVmVGpCd7FtW67rKooMjY5J4YRkjifa83SsIEjk2FJ6Waz8Ck217rSUy+Xk+77CMGz19AEAACApCAJl0o6W5U2dPuRo2x1BzfueMeQonzeVSZfGAQAAAAAAAACgGUjuAvaDViuQpit2haEhz5N2D4faequngUJBpaadpf+Vm24Y0SmvNHT+2owG+m3lcoZc15XneVR2AIBOZGdVGNzY6lkAqKNisahczpHtSOevzWjnrkC15GmlHGnd2oxsp1TBa2Ki2PjJAgAAAAAAAAAgkrsA4IDKFbvGPGnHzkldc+24rCRQ/8nSjOJuiiJp2x2Bdu4KdPn6rIZWp9TbO53gBQBAzUgsAxoiiiJFUSS3x9JAv63L12e1afN4pc32fBxH2rA+q4F+W27P9BgAAAAAAAAAADSD2eoJAEA7Mw1TlmXJn5CGh0Ndc+34Aas7BIG0afO4dg+H8icky7JkWVZzJgwAAID98n1flpUol5OGVqd09VW9On3IqUral0oVuta82tHVV/VqaHVKuZxkWYl832/NxAEAAAAAAAAAXYnKXQCwH5ZtKYqkMJC23FKoqW2PVErwuvmWgjZ8IKcoktLpNCcCAQAA2kAcx/J9X67rqrfX0OCgrcsuycl8JKM9T8cKgkSOLZ15UV59K3KyHcntmU7sot02AAAAAAAAAKCZSO4CgP2wTEteUdo7Emv7jhozu6bcuSPQyEisdMZU1nUaNEMAAAAsVBiG8jxPruuqr9dSlJKSrKGBfqvSojE4zFQmW6rgFUWRPI/ELgAAAAAAAABA87VVcpfneXrwwQf1/PPPa+/evTIMQ/l8XitWrNDLX/5y5XK5Vk8RQBcxpnrzRKF0732Bomhh+0eRdM99gc49Oy1JMk2TE4IAAABtIo5jeZ4ny7KUtkKlnOn3f0mSKOVKQRxoYqKoaKFvBAGgwYihAQAAAAAAdI+WJ3eNjY3pm9/8pm6++WY99thjSpJk3u0Mw9Dg4KDWrVun888/X319fU2eKYBuY6h8ck/y/fmPTQfi+4nKh7XyyUIAAAC0jyiK5Bd9JcWiMpmMJGlyclL+yIhkZ1s8OwCYRgwNAAAAAACgO5mtvPNvfOMbOvvss/WpT31KjzzyiOI4VpIk837FcaxHHnlEn/rUp3T22WfrG9/4RiunDqALJFM9eQxDct2DS8xyXUPlnK59Bd4BAADQXnjfBqDdEEMDAAAAAADoXi2p3BXHsT70oQ/pW9/6ViVoPrP9xXxm/tzzPP2v//W/tGPHDn3605+mGg6AhigfjyxbOmWVI8vSglozWpZ06ipH1tSRlpaMAAAAAICFIIYGAAAAAACAliR3ffSjH9XWrVsllQJO5ZWF+XxeJ5xwgl7ykpeot7dXUqnk/JNPPqmHH35YIyMjVQGqb33rW3IcR3/3d3/XiocBoAtEcaRMWlqWN3X6kKNtdwQ173vGkKN83lQmLQVB7fsBAAAAACARQwMAAAAAAEALkrt+9KMfacuWLVUBphNOOEF/+Zd/qde85jWyLGve/aIo0n/+53/quuuu08MPP1wJaN188816/etfrzPPPLOZDwNAl4jCSI4l2Y50/tqMdu4KVEueVsqR1q3NyHZKFbwmJoqNnywAAAAAYMkghgYAAAAAAABJMpt9h5s3b5Y0XTr+Xe96l77xjW/ota997T6DUpJkWZbOPvtsffOb39S73vUuJUlSCU5de+21zZg6gC4UJ7GiKJLbIw3027p8fVaOs/99HEfasD6rgX5bbk8psB4tpJ8jAAAAAKDrEUMDAAAAAACA1OTKXb/4xS/0yCOPVFYcvulNb9KHPvShBY1hGIY+9KEP6ZlnntG3v/1tSdLPf/5z/eIXv9BLX/rSek8ZAOT7vnLLepXLGRpandLVV5naeuukjEL1dpYlrTnN0bq1GQ3028rlJMtK5Hl+ayYO1MLOqjC4sdWzAAAAADADMTQAAAAAAACUNTW568EHH5RUWnFoWdaCg1IzffCDH9S///u/V1YvPvDAAwSmADREHMfyfV+u66q319DgoK3LLsnJfCSjPU/HCoJEji2deVFefStysh3J7Skldvm+rziOW/0QAAAAAAAdhBgaAAAAAAAAypqa3PXMM89IKq0cPPHEE3XYYYcd9FiHH364TjrpJN13330yDEPPPvtsvaYJAHOEYSjP8+S6rvp6LUUpKckaGui3pFJ8XMFhpjLZUgWvKIrkeSR2AQAAAAAWjhgaAAAAAHQIO6vCsRuVWbZMklTYu1eaWlwDAPViNvPOLMuqXH7hC1+46PGOPPLIeccGgEaI41ie58nzPMVxIMeRMmlDmYyhdFrKulIcBzO2IbELAAAAALBwxNAAAAAAAABQ1tTKXYcffnjlchAEix5v5hiLWcEIAAsRRZH8oq+kWFQmk5EkTU5Oyh8Zkexsi2cHAAAAAOh0xNAAAAAAAABQ1tTKXYODg5XLTzzxxKLHmznGscceu+jxAOBgJZRXBQAAAADUCTE0AAAAAAAAlDU1uevoo4/WiSeeqCRJ9Itf/EIPPfTQQY/1wAMPaHh4WIZh6LjjjtPRRx9dx5kCAAAAAIAqdlaFwY1VX1SuBRqDGBoAAAAAAADKmprcJUl//ud/Xrn8sY99TJOTkwseo1gs6sorr5x3TAAAAAAAAKDTEUMDAAAAAACA1ILkrre85S0677zzlCSJHnzwQb3nPe/Rs88+W/P+zzzzjC688EI9+OCDkqQ3velNWrt2bYNmCwAAAAAAADQfMTQAAAAAAABIkt2KO/3Upz6lvr4+fe1rX9NPf/pTveENb9A73vEOvfnNb9bLXvYymWZ1zlkcx/r5z3+ub33rW7rxxhs1Pj4uwzD0x3/8x/roRz/aiocAAAAAAAAANBQxNAAAAAAAADQ9uevP/uzPKpfz+bxGRkY0Pj6u66+/Xtdff73S6bRe/OIXK5vNyjAMeZ6np556SsViUZKUJIkkqa+vT48//rje+c531nS/hmHoK1/5St0fDwAAAAAAAFBvxNAAAAAAAAAgtSC5a+fOnTIMo3K9fLkccCoUCnrsscfm3D57+9HRUe3ataum+0ySpOo+AQAAAAAAgHZGDA0AAAAAAABSi9oyzmdfgSMCSgAAAAAAAEAJMTQAAAAAAIDu0pLkrtkrCQEAAAAAAABUI4YGAAAAAACApid3/fznP2/2XQIAAAAAAAAdhRgaAAAAAAAAJMls9QQAAAAAAAAAAAAAAAAAAHOR3AUAAAAAAAAAAAAAAAAAbajpbRkBAF3EchWuXDPnNgAAAAAAAAAAAAAAcGBU7gIAAAAAAAAAAAAAAACANkTlLgCYyc6qMLix1bMAAAAAAAAAAAAAAACgchcAAAAAAAAAAAAAAAAAtKOmV+667rrrGjLupZde2pBxAQAAAAAAgGYjhgYAAAAAAACpRcldhmHUfVwCUwAAAAAAAFgqiKEBAAAAAABAakFy18FKkmTObYZhKEmShgS6AAAAAAAAgE5DDA0AAAAAAGBpaUly13xBplqVg1BJkixqHAAAAAAAAKCdEUMDAAAAAABA05O7vvrVry5o+yiKNDo6qscee0w//vGPdf/998swDOXzeX3kIx/REUcc0aCZAgAAAAAAAK1BDA0AAAAAAABSC5K7TjvttIPa7/Wvf70uvfRS/dd//Zc+/OEP67nnntOmTZv0la98Rf39/XWeJQAAAAAAANA6xNAAAAAAAAAgSWarJ7BQv//7v69/+Zd/UV9fn5555hldfPHFGh8fb/W00CnsrAqDG6u+ZGdbPSsAAAAAAIC6IoYGAAAAAACwNHRccpckvfSlL9Xll18uSXrqqaf0+c9/vsUzAgAAAAAAANoLMTQAAAAAAIDO15HJXZK0bt069fT0KEkSbdmyRXEct3pKAAAAAAAAQFshhgYAAAAAANDZOja5y3EcrVq1SpL0/PPP66c//WmLZwQAAAAAAAC0F2JoAAAAAAAAna1jk7skaeXKlZXL//3f/93CmQAAAAAAAADtiRgaAAAAAABA5+ro5K4gCCqXf/vb37ZwJgAAAAAAAEB7IoYGAAAAAADQuTo6ueuRRx6pXO7p6WnhTAAAAAAAAID2RAwNAAAAAACgc3Vscte2bdv05JNPVq6/4AUvaOFsAAAAAAAAgPZDDA0AAAAAAKCzdWRy10MPPaQPfvCDMgxDkmQYhlavXt3iWQEAAAAAAADtgxgaAAAAAABA57ObfYe//vWvF7xPFEUaHR3V448/rv/4j//QD37wA4VhKKkUlDr77LO1bNmyOs8UAAAAAAAAaA1iaAAAAAAAAJBakNx19tlnV1YLHqwkSWQYhpIkUTab1eWXX16n2QEAAAAAAACtRwwNAAAAAAAAUguSu8qSJDmo/QzDqASl+vr69JnPfEb9/f11nh0AAAAAAADQesTQAAAAAAAAulvLkrsOVpIk6unp0Rvf+Ea9//3v1+GHH97qKQEAAAAAAABthRgaAAAAAADA0tD05K5169YteB/LspTL5bRixQqdeOKJOuWUU5TNZhswOwAAAAAAAKD1iKEBAAAAAABAakFy1yc/+clm3yUAAAAAAADQUYihAQAAAAAAQJLMVk8AAAAAAAAAAAAAAAAAADBX0yt3AQC6iJ1VYXBjq2cBAAAAAAAAAAAAAEBHonIXAAAAAAAAAAAAAAAAALQhkrsAAAAAAAAAAAAAAAAAoA21TVvGIAj00EMP6YEHHtBzzz2nkZERGYahvr4+rVy5UieddJJOPPFEOY7T6qkCAAAAAAAALUEMDQAAAAAAoLu0PLnrscce0w033KBvf/vbKhaL+902nU7rD//wD/Xnf/7nOvbYY5s0QwAAAAAAAKC1iKEBAAAAAAB0p5a1ZYzjWJs3b9batWu1ZcsWFQoFJUmiJEnmbFu+vVAoaMuWLVq7dq02b96sKIpaMHMAAAAAAACgOYihAQAAAAAAdLeWVO6Kokjvfe979V//9V+VQJRhGJK0z+BU+edSKaj1xS9+UQ899JC+8IUvyLKs5kwcAAAAAAAAaBJiaAAAAAAAAGhJcteVV16pH//4x5JKAadyMOqEE07QK17xCvX396u3t1eSNDY2puHhYd1zzz166KGHqvbZtm2bPvaxj+lv//ZvW/EwAAAAAAAAgIYhhgYAAAAAAICmJ3fdf//9uummm6pWGZ511ln6q7/6Kx1zzDH73feJJ57Qpk2bdPvtt1eCU9/4xjf0tre9TatWrWrG9AEAAAAAAICGI4YGAAAAAAAASTKbfYf/+I//KEmVsvEf/OAH9fnPf/6AQSlJOvroo/VP//RP2rhxo5IkqQS3rrvuusZNGAAAAAAAAGgyYmgAAAAAAACQmpzc5fu+tm/fLsMwZBiG3v72t+vd7373gsd55zvfqT/+4z+ulKLfvn27fN9vwIwBAAAAAACA5iKGBgAAAAAAgLKmJnfdddddCoJASZLIsiy9//3vP+ixLrvsMtl2qatkGIa666676jVNAAAAtAM7q8Lgxqov2dlWzwoAAKDhiKEBAAAAAACgrKnJXU8//bQkyTAMnXTSSVq+fPlBj7V8+XKddNJJlet79uxZ9PwAAAAAAACAViOGBgAAAAAAgDK7mXf2/PPPVy4feeSRix7viCOO0D333CNJ+t3vfrfo8QAAAAAAXcjOqnDsRmWWLZMkFfbulZKkpVMC0N2IoQEAAAAAAKCsqZW7UqlU5fLExMSixysWi/OODQAAAAAAAHQqYmgAAAAAAAAoa2py18qVKyuXn3jiiUWP9/jjj1cur1ixYtHjAQAAAAAAAK1GDA0AAAAAAABlTU3uGhgYkCQlSaJf/vKXuu+++w56rPvvv19PPvnknLEBAAAAAACATkYMDQAAAAAAAGVNTe468cQTtWLFChmGoSRJdOWVV1aVha9VsVjUlVdeWbm+fPlyvfzlL6/nVIGOYhiGTMOUYRitngoAAAAAAFgkYmgAAAAAAAAoa2pylySdd955SpJEhmHoZz/7mS688EL99re/rXn/5557ThdddJEeeughSaWklvPOO69R0wXalmVZcl1XmXRG6VRaqVRK6VRa+XxeruvKsqxWTxEAAAAAABwkYmgAAAAAAACQWpDc9Rd/8RfKZrOSSqXlf/rTn+qNb3yjrr32Wj3xxBP73G/37t36h3/4B73xjW/Uzp07KxWKXNfVxRdf3JS5A+3ANE3lcjnlcjmZpqPJQCoWpUKx9H3cl0zTmbFN05/mAAAAAABgkYihAQAAAAAAQJLsZt/h8uXL9alPfUqXXXZZ5baxsTF94Qtf0Be+8AX19fXpJS95iXp7eyVJnufpF7/4hUZHRyWpsmIxSRJZlqVPfvKTWrFiRbMfBtAStm3LdV1FkaHRMSmckMzxRHv2RApCybGl9LJY+RWS7Uhuj6VcLiff9xWGYaunDwAAAAAAakQMDQAAAAAAAFILkrsk6dxzz9XHP/5xXXnllQrDsBJokqSRkRHdf//9lVWFkio/k1TZ1nEc/c3f/I1e97rXNX3+QCuYpinXdRWGhjxP2j0cauutngYKBc14iuimG0Z0yisNnb82o4F+W7mcIdd15Xme4jhu3QMAAAAAAAALQgwNAAAAAAAALevX9ra3vU033XSTjj/++ErgyTCMytdMM29LkkTHH3+8brzxRv3RH/1R0+cNtEq5YteYJ23fOamNV4xp+46gKrFLkqJI2nZHoI1XjGnHrkl5nhRFpQQvAAAAAADQWYihAQAAAAAAdLeWVO4qO/7447Vlyxbt2LFDt9xyi+666y798pe/nHfbo446Sq985Sv11re+VaeffnqTZwq0lmVZsixLo2PS8HCoa64dVxBI1n6ewUEgbdo8rquvMjU4aKuvtzRGFEXNmzgAAAAAAFg0YmgAAAAAAADdq6XJXWVDQ0MaGhqSJI2Ojur555/X6OiokiRRPp/XihUr1NfX1+JZAq2TTqcVRVIYSFtuKSgIatsvCKSbbylowwdyiqLSOL7vN3ayAAAAAACgIYihAQAAAAAAdJ+mJnc9++yzuv/++yvXX/nKV2rZsmVV2/T19RGEAmZxHEfjvrR3JNb2HTVmdk25c0egkZFY6YyprOs0aIYAAAAAAKBeiKEBAAAAAACgrKnJXd/73vf0iU98QpKUyWS0bdu2Zt490JFM05QkRaF0732BFtpVMYqke+4LdO7Z6cp4cRzXe5oAAAAAAKBOiKEBAAAAAACgrKnJXWNjY0qSRJJ00kknyXXdZt490JEMw5AkJYnk+8lBjeH7iaaeepXxAAAAAABAeyKGBgAAAAAAgDKzmXeWz+cllZJLDj300GbeNdCxysFcw5Bc9+ASs1zXUDmnqzweAAAAAABoT8TQAAAAAAAAUNbU5K6ZwaiJiYlm3jXQscotFC1bOmWVI8ta2P6WJZ26ypFlV48HAAAAAADaEzE0AAAAAAAAlDU1ueuEE06otIT7xS9+0cy7BjpaEATKpKVleVOnDzkL2veMIUf5vKlMujQOAAAAAABob8TQAAAAAAAAUNbU5K4jjzxSq1atUpIkGh4e1vDwcDPvHuhYxWJRliXZjnT+2oycGvO7Uo60bm1GtlOq4FUsFhs7UQAAAAAAsGjE0AAAAAAAAFDW1OQuSbrwwgsrlz/96U83++6BjhRFkaIoktsjDfTbunx99oAJXo4jbVif1UC/LbdnegwAAAAAAND+iKEBAAAAAABAakFy17nnnqsLLrhASZLoRz/6ka688kqFYdjsaQAdx/d9WVaiXE4aWp3S1Vf16vQhR1NdGiosS1rzakdXX9WrodUp5XKSZSXyfb81EwcAAAAAAAtGDA0AAAAAAACSZLfiTj/+8Y8rm83qq1/9qv71X/9Vu3bt0rve9S6dffbZWr58eSumBLS9OI7l+75c11Vvr6HBQVuXXZKT+UhGe/ZECkLJsaUzL8qrb0VOtiO5PdOJXXEct/ohAAAAAACABSCGBgAAAAAAgKYnd/3Zn/1Z5XI2m9X4+Lgef/xxffSjH5UkveAFL9CKFSuUzWZrHtMwDH3lK1+p+1yBdhOGoTzPk+u66uu1FKWkOGtooN9WIsmQFBxmKpMtVfCKokieR2IXAAAAAACdhhgaAAAAAAAApBYkd+3cuVPGjD5yhmEoSRIlSSJJ+s1vfqPf/OY3VdvsT5IkNW8LLAVxHMvzPFmWpbQVKuVU/zzlSkEcaGKiqCiKWjNJAAAAAACwKMTQAAAAAAAAILWoLeNsBJaAhYuiSH7RV1wsyDAMGTKUKNHEyIhk175qFwAAAAAAdAZiaAAAAAAAAN2nJcld5RWGAOojSRIlauPnlZ1VYXBjq2cBAAAAAP8/e3ceV3WV+H/8fdnFBRRxLxdEcBeX3HdtMTXFyqWv1WRWZjPl0mSLlk6O1pQ1lVo6OpajLS6ZW2qaGynihhsqouaGBAqIsi/394c/blzWC1zgIq/n4zGPuZ/P55zzOXc5IO/OORcoV8jQAAAAAAAAUOqTu86cOVPatwQAAAAAAADKFTI0AAAAAAAASJJdWXcAAAAAAAAAAAAAAAAAAJATk7sAAAAAAAAAAAAAAAAAwAYxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjmUdQfKm379+unatWtFqrtt2zY1bNgwz+tXr15V//79i9R27dq1tWfPniLVBQAAAAAAAAAAAAAAAGB72LkLAAAAAAAAAAAAAAAAAGxQie3cdefOHaWlpZmOK1euLEdHxzzLF2XHqhEjRujll18uUv+swWAwyM7O8vlxBoOhUO3b2dlZXMfBgU3YAAAAAAAAypuKkKEBAAAAAACg6EpkRtDVq1f18MMPKz09XZLk4eGh9evXq0aNGnnWuXbtmgwGg4xGo8X3WbRokfz9/VWnTp1i97kohg0bprlz55ZY+7Nnz5a/v3+JtQ8AAAAAAICyU1EyNAAAAAAAABRdiXwt46JFi5SWlmYKmf7xj3/kG0plZTAYLPqfJCUnJ+vzzz8viacAAAAAAAAAlCgyNAAAAAAAABTE6pO7YmNjtXbtWlOANGjQIPXt27dQbRiNxgL/l7lCcfPmzYqPj7f20wAAAAAAAABKDBkaAAAAAAAALGH1r2XcsWOH0tLSJN1dQfjiiy8Wuo158+apZs2aeV6/deuWXnvtNaWnpyspKUlbtmzRiBEjitxnAAAAAAAAoDSRoQEAAAAAAMASVp/ctW3bNkl3Q6nevXurWbNmFtfNXE3Yrl071atXL9+ygwYN0oYNGyRJW7duJZgCAAAAAABAuUGGBgAAAAAAAEtY/WsZjxw5Ynr80EMPWbt5k2HDhkm6G2YdP368xO4DAAAAAAAAWBsZGgAAAAAAACxh1cld165d0+3bt03H3bt3t2bzZjp37iwnJydJd7eYv3r1aondCwAAAAAAALAWMjQAAAAAAABYyqpfyxgaGirp7nbyDRo0UK1atazZvBkHBwc1atTIdM+wsDA1aNCgxO6XmzNnzmjSpEkKCQnRjRs3JEnu7u5q0KCBOnXqpAEDBsjX17fI7W/dulWbN2/W+fPnFRMTI2dnZ7m7u8vb21udOnXSI488UqKvMVAgh8pK8p5W1r0AAAAAAKBcqWgZGgAAAAAAAIrOqpO7YmJiTI+LEkoZDIZCla9Xr54pmIqNjS30/Yrr9OnTOn36tNm5O3fu6OrVqwoMDNTnn3+uXr166Z133lHDhg0L3f6uXbvMjhMTExUbG6vff/9dv/zyiz766CM9/vjjmjp1qipXrlycp1Lo1/7eZ5BBhhxnZGuvkyGXfhpssJ/3IoNBZi+9gdceKIqsv3/4XQQUHWMJKD7GEVB8jCPL3WsZGu83UHj8zASKj3EEWAdjCSg+xhFQfIyj/Fl1clfW7eQ9PDwKVdfNzc30Btnb21tUJ+uEpri4uELdr7Ts2bNHI0aM0EcffaQ+ffpYte2UlBStXLlSgYGB+vLLL4s0gSyTu7u79Tp2L0hKkRzMh4e7u5vk4l42/clLmqPk4mJ2ysXdXXIo3mQ/WCDNUXL+87V3cXbhtQeKyc3Nray7ANwTGEtA8TGOgOJjHOXvXsvQyJWA4uFnJlB8jCPAOhhLQPExjoDiYxzlZNXJXQkJCabHjo6Ohap74MCBYt07Pj6+WPULo3bt2urfv7+6desmHx8feXh4yMnJSbGxsTp9+rS2b9+uH3/8USkpKZLuBnZ/+9vftHz5crVt27bA9n18fDRgwAB16NBBTZs2lbu7u4xGo27cuKFjx45p3bp12rNnj6n8hQsXNH78eH3//feqXr16iT1vAAAAAAAAFF9FydAAAAAAAABQfFad3OXk5GR6XBpfk3jr1i3T48IGYUU1e/ZsderUSQ4OOV86T09PeXp6qlevXho3bpxeeeUV05b3ycnJmjRpkrZs2WL2OmXl7u6u7777Tn5+frleb9CggRo0aKBHH31Uu3fv1uuvv256DS5duqT3339fH3/8cZGeV1l8raVNS7qlKmlpZqfuxN6SXHJ/78pMWrxckpLMTiXFxkoOqWXTn4okLV4uyUly+f+7dyUlJ/HaA0VgMBhMs+9v3bolo9FYxj0CyifGElB8jCOg+O61cVSSu1HdaxkauRJQePfaz0ygLDCOAOtgLAHFxzgCiu9eG0fWzpWsOrmrWrVqpscxMTHWbDpX0dHRud67JHXt2tWicg0bNtSyZcv0+OOPKzw8XJJ07do1rVq1Sk899VSudapUqZLnxK7sevfurQULFuiZZ55R2v+fhLRp0ya9+OKLatasmUVtZFXeB4b1GWWUMccZ2drrZMyln0Yb7Oe9yGiU2Utv5LUHistoNPL7CLACxhJQfIwjoPgYR/m71zI03mugePiZCRQf4wiwDsYSUHyMI6D4GEc52VmzsTp16ki6+0KfO3dOSdl2FLKm5ORkhYWFmY7r1q1bYvcqKg8PD02dOtXs3ObNm63WfseOHTVixAjTsdFo1M8//2y19gEAAAAAAGB9ZGgAAAAAAACwlFUnd2XdMSotLU2HDx+2ZvNmDh8+rJSUlFzvbUseeughValSxXQcHBysxMREq7X/+OOPmx3v37/fam0DAAAAAADA+sjQAAAAAAAAYCmrTu6qXbu26tWrJ4PBIElavXq1NZs3s2bNGtPjunXrqnbt2iV2r+JwcHBQ69atTcdpaWmKjIy0WvutWrWSo6Oj6TjzKyABAAAAAABgm8jQAAAAAAAAYCmrTu6SpL59+5q+/3Lr1q06d+6ctW+hc+fO6eeff5bBYJDBYFC/fv2sfg9r8vDwMDuOiYmxWtt2dnZyd3cvkbYBAAAAAABQMsjQAAAAAAAAYAmrT+564oknJEkGg0EZGRmaPHmy7ty5Y7X279y5o8mTJysjI0NGo1FSzq8mtDXZv4bR2dnZqu0nJSWVWNsAAAAAAACwPjI0AAAAAAAAWMLqk7t8fX3Vs2dPGY1GGQwGhYWF6eWXX7bKjlIxMTGaMGGCzp07Z1px2KtXL/n6+lqh5yXnypUrZsc1atSwWtsxMTG6ffu26Tj7LmEAAAAAAACwPWRoAAAAAAAAsITVJ3dJ0rRp00w7SBmNRh08eFBDhgzR1q1bTSsFCyNze/ohQ4bo0KFDMhgMMhqNcnFx0bRp06zdfau6fv262bb6Hh4eqlWrltXa37Nnj9kxIR0AAAAAAED5QIYGAAAAAACAgjiURKNeXl5666239O6775pCpBs3bui1115T3bp15e/vr06dOqlVq1aqXLlyrm3Ex8fr1KlTCgoK0tq1a3X9+nXTSsbM/3/77bfVuHHjkngKVrNgwQKzMK579+4yGAxWaTs1NVWLFy82O9ejRw+rtA0AAAAAAICSRYYGAAAAAACAgpTI5C5JGjlypKKiovTFF1+YJjMZjUaFh4dr/vz5kiSDwaCaNWuqWrVqqlKliiTpzp07un37tm7cuKGMjAxTvczymV599VU9/vjjJdX9HFJSUnT16lU1adLE4jpr1qzRDz/8YDo2GAx6+umncy37xx9/yNnZWe7u7ha1nZGRoRkzZpjtCubp6alHH33U4v4BAAAAAACgbN1rGRoAAAAAAACsq8Qmd0nSK6+8Ii8vL7399ttKSEgwC6gy/z8yMlKRkZE5rmWV9VrlypU1d+5cDRw4sCS7nkNSUpIGDx6shx9+WP7+/urSpYscHHJ/+aKiorRgwQKtXLnS7PywYcPUunXrXOucOHFCf//73zVy5EgNGTJELVq0yLMvZ86c0T//+U8dOHDA7PzkyZPl6upayGcGAAAAAACAsnQvZWgAAAAAAACwrhKd3CVJjzzyiHx9ffXRRx/p119/NW0Hn5fcrmXWGThwoKZMmaJGjRqVYI/zlp6erk2bNmnTpk2qUqWKmjdvriZNmsjNzU2Ojo6Ki4vTmTNnFBwcrNTUVLO6HTt21KxZs/JtPz4+XkuXLtXSpUvl6empFi1a6L777lPVqlVlNBoVHR2tY8eO6ezZsznqjhs3Tv7+/lZ9vgAAAAAAACgd91KGBgAAAAAAAOsp8cldktS4cWPNnz9f58+f19dff63ffvtN165ds6hu/fr11b17dz3zzDPy8vIq4Z5a7s6dOzp48KAOHjxYYNnRo0dr2rRpcnJysrj9qKgo7d69u8ByLi4umjZtmkaPHm1x2wAAAAAAALA992KGBgAAAAAAgOIplcldmby8vEy7V12/fl1Hjx5VZGSkYmNjFRsbK0lyc3NT9erV5enpqfbt26tu3bql2cU8ubi46KWXXtKBAwd06tQppaSk5Fve1dVVAwYM0NNPP53nVzFm5ePjozFjxigoKEgXLlxQRkZGvuU9PT01fPhwPfXUU6pTp06hngsAAAAAAABsV3nO0AAAAAAAAGBdpTq5K6u6deuWq9DJyclJkyZNkiSlpaXp4sWLunz5siIiIhQfH6+0tDRVrVpV1apVk7e3t3x8fGRvb29x+/fdd5/effddSVJCQoLCwsJ09epV3bhxQwkJCTIYDKpatapq1Kihli1b6r777iuR5wkAAAAAAADbUd4yNAAAAAAAAFhXmU3uKs8cHBzk7e0tb2/vEmnf1dVVbdq0UZs2bUqkfQAAAAAAAAAAAAAAAAC2z66sOwAAAAAAAAAAAAAAAAAAyInJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIMcyroDAFAuOVRWUrNpcnF3lyQlxcZKRmOZdgkAAAAAAAAAAAAAANxb2LkLAAAAAAAAAAAAAAAAAGwQk7sAAAAAAAAAAAAAAAAAwAYxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABsEJO7AAAAAAAAAAAAAAAAAMAGMbkLAAAAAAAAAAAAAAAAAGwQk7sAAAAAAAAAAAAAAAAAwAYxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABsEJO7AAAAAAAAAAAAAAAAAMAGMbkLAAAAAACgDE2YMEFdunTRhAkTyrorAAAAAAAAKEfIlSoGh7LuAAAAAACg6DIyMrR3714FBgbqxIkTunnzpm7fvi0nJye5u7vLy8tLrVu3Vp8+fXT//feXdXdt0rBhwxQREaE5c+bI39+/rLsDAAAAAABQKsiVio9cCUBpYHIXAAAAAJRT+/bt07///W9dunQpx7W0tDQlJCQoPDxce/fu1YIFC+Tn56cJEyaoTZs2ZdBboGKZNWuWNm/erDp16mjdunVl3Z1S1a9fP127dk2DBg3SjBkzyro7AAAAAIBckCsBtotciVwpOyZ3AQAAAEA59M0332jhwoUyGo2SpDZt2qhHjx7y8fGRm5ubkpOTFR0drePHj2vfvn26dOmSjh49qqVLl+rTTz8t284DMLNw4cKy7gIAAAAAoAIhVwLuHeRKFQOTuwAAAADcs+zs7GQwGGQ0GpWRkVHW3bGazZs3a8GCBZIkd3d3zZw5U507d861bN++ffW3v/1Ne/fu5Q99AAAAAAAAC5ErkSsBgK1gchcAAACAe4q9vb2cnZ3l6OiY41pqaqqSk5OVnp5eBj2zjsjISH3wwQeSpEqVKmnhwoVq3LhxvnUMBoN69eqlzp07KyAgoDS6CQAAAAAAUO6QK+VErgQAZY/JXQAAAADuCXZ2dnJ1dZW9vb3S06X4BCk9TTIaJYNBsneQXJwdVaWKo9LT05WQkFAuV11+++23Sk5OliS9+OKLBQZwWTk7O6t///65XuvSpYskady4cRo/frwOHTqktWvX6uTJk7p586Y8PT21bt06szrBwcFat26dgoODFR0dLScnJ9WrV0/dunXTyJEjVb169VzvtXHjRr3//vuSpLVr16pevXq5lgsPD5e/v78k6Z133tHgwYPNrs+aNUubN29WnTp1tG7dOkVGRmrlypX67bffFBkZqUqVKql58+Z64okn1K1bN4tfp+yioqL0ww8/6MCBA7p27ZqSk5NVrVo1Va9eXU2aNFHnzp3Vt29fVa5cuVDt5vb8du7cqR9//FHnzp1TYmKiGjRooKFDh8rf318ODnf/hDcajdq2bZvWrVun33//XQkJCWrYsKGGDRum4cOHy2Aw5HvfpKQkrVu3Tnv27NHFixd1+/ZtVa1aVd7e3nrwwQf1yCOPyN7ePte6qampCgwM1IEDB3Tq1CldvXpVCQkJqly5sho0aKCuXbvqiSeekLu7e573HzZsmCIiIjRo0CDNmDFDv//+u1auXKmgoCDdvHlTVapUUZs2bTR27Fi1atWqUK9pXi5duqTVq1fr0KFDioyMVFpamjw8POTn56cnnnhCvr6+edZNTk7WunXrtGvXLl24cEF37txR5cqVVb16ddWrV08PPPCAevfubfocL168WEuWLDHVj4iIMI2vrAIDA02PJ0yYoKNHj8rPzy/HSujS/pwkJiYqICBAQUFBOnPmjMLDw5WUlKSqVauqcePG6tGjh4YPHy5XV9ccdSdMmKAjR46Yjjdv3qzNmzeblcntOUpSXFycVq9erX379unKlStKSEiQm5ubmjdvrkGDBqlv37659hcAAAAArIFcqWDkSkVDrvQnciVyJXKlomNyFwAAAIByz8HBQa6urkpPNyjutpSWKsXeylDwsVQlJBjl6mpQu7aOcnezk4Oj5FrJXlWqVFFCQoLS0tLKuvsWMxqN+vnnnyVJrq6uGjJkSIncZ+HChfr666/zvJ6RkaF58+Zp9erVZudTUlIUGhqq0NBQrV69WrNnz85zW39rO336tCZPnqyYmBjTueTkZO3fv1/79+/XyJEjNWnSpEK3GxwcrClTpig+Pt7sfHR0tKKjo3X+/Hn98ssvcnd3V48ePYr1HD788EOtXbvW7FxYWJjmzZunI0eOaPbs2UpPT9d7772nX3/91axcaGioPvzwQ509e1ZvvvlmnvcICQnRG2+8oaioKLPzMTExCgoKUlBQkNauXat//etf8vDwyFF/zpw5OUIV6W6AEhISopCQEK1evVoffvih2rZtW+Bz3rlzp2bOnKmkpCSzvuzevVsBAQF67733NHDgwALbyc/SpUu1ZMmSHCurw8PDFR4ers2bN+u5557T+PHjc9S9ceOG/vrXv+rixYtm5+Pi4hQXF6dLly5p//79ioqK0t/+9rdi9dNSJf05mTx5so4ePZrjfGxsrI4ePaqjR49qzZo1mjdvnho1amSV57Rv3z69++67un37ttn5GzduaO/evdq7d6+6d++uf/zjH7mGfwAAAABQHORK1kWu9CdyJXPkSneRK5ErFQWTuwAAAACUa5krK9PSDLpzR7pwMU1r1yUp8ECqsv7NbW8vdensKP9hLmrS2EFVqhjk6uqqO3fulJuVlhcuXFBsbKwkqW3btoVe0WeJ3bt3KywsTF5eXho9erSaNGmi5ORkhYaGmsrMnz/fFMDVq1dPY8eOlY+PjxITE7V3716tXr1ad+7c0dSpU7V06VJ5e3tbvZ9ZJScn66233lJ8fLyefvppdevWTY6Ojjp16pS++eYb3bhxQ99//71q166tMWPGWNxuSkqKpk+frvj4eLm6usrf318dOnRQ9erVlZaWpoiICJ08eVI7d+4s9nP48ccfderUKXXr1k1Dhw5VnTp1FBkZqa+//lqnTp3Srl27tHHjRoWFhenXX3/Vgw8+qIceekgeHh66cuWK/vOf/+jSpUv66aef1KdPH3Xt2jXHPcLCwjRx4kQlJiaqevXq8vf3V7t27eTm5qaYmBjt3btXP/74o0JCQvT3v/9dX331lWm1Xqb09HTVr19fvXv3VosWLVSnTh3Z29vr+vXrOnjwoDZu3Khbt25p2rRpWrFihWrUqJHncw4LC9OOHTvk4eGhMWPGmFY5BgYGavny5UpOTtbcuXPVsWPHPFfrFmTRokVaunSpJKl169YaMmSImjRpIgcHB9OqyxMnTmjJkiVyc3PTk08+aVb/448/NgVwDz/8sPr06aOaNWvK3t5e0dHROnPmjHbv3m1WZ8SIEerXr5+++uor7dmzR56envr000+L1P/sSuNzkp6eLi8vL/Xs2VPNmzdXzZo1ZTQaFRERod27d2vHjh0KDw/XG2+8oW+++UbOzs6mutOnT5eDg4PGjRunyMhI9erVSy+++KJZ+5UqVTI7PnDggF5//XWlp6erbt268vf3V8uWLVW5cmVFRUVp+/bt2rJli3777TfNmjVLc+fOtcprCQAAAAASuZK1kSv9iVyJXIlciVzJmpjcBQAAAKBcy1xZefuOdCAoRfM+jVdqas5y6enSb/tSFXQwVVMmVVbnTk6qWvXPIK48CAsLMz328fEpsXt07NhR8+bNk5OTk+m8n5+f6fq3334rSfLy8tKXX36pqlWrmsp16NBBnTt31pQpU5Samqo5c+aYQpCSEhMTIwcHB33++eemfkpSy5Yt1bdvX1MgsGjRIj388MM5gqF169bJYDDk2PL9+PHjppWIs2bNyrGCslWrVhowYIBeeeUV01caFNWpU6c0atQovfbaa6Zzvr6+euCBBzR69Ghdv35dCxcu1K1btzRp0iSNHDnSrFz79u31xBNPKCEhQWvXrs0RrhiNRr333ntKTEyUt7e3Pv/88xzPt3PnzurevbumTJmiU6dOafPmzRo6dKhZmfHjx6t+/fo5tl5v3ry5+vXrpxEjRuiFF15QTEyMVq1alSOAySo0NFS+vr764osvVKVKFdP5Vq1aqUGDBnrvvfcUHx+vLVu2aPTo0Za+lCYhISFatmyZJOkvf/lLjr74+vpq4MCBmjVrlrZs2aIvv/xSjzzyiOnznJycrL1790qSxowZk+sKyu7du2vcuHG6deuW6VyNGjVUo0YN03Oyt7eXl5dXofufm5L+nEh3t+i///77c5zP/LwPGTJEr732mi5duqStW7eafUbq1asnd3d3OTo6SpKqVKmS73NPTEzUzJkzlZ6ers6dO+uDDz6Qi4uL6bqPj4969Oihdu3aae7cudq1a5cOHjyoTp06Fep1AwAAAIC8kCtZ/x7kSneRK5ErkSv9iVyp+OzKugMAAAAAUFT29vayt7dXQqJ08WJangFcVqmp0sefxOvCxTQlJP7ZRnmQubpSUoErzi5cuKDz58/n+r/ExMQ869nZ2emtt94yC+CyWrt2rWlF6ptvvmkWwGXq2rWrBg8eLEmmLdVL2rBhw8wCuEyenp6m8CQpKSnXrd/zcvPmTdPj3NrO5ODgUOzVrrVr19Yrr7yS47yLi4sGDRok6e7737JlS7NgJZOHh4f69OkjSTp27FiO67/99pspxJ0xY0aOAC5T165d1bdvX0nSxo0bc1xv0KBBjgAuq6ZNm5pCmT179uRZLtPbb79tFsBleuihh+Tp6Snp7lcYFMXy5cuVkZEhX19fvfDCC7mWsbOz05QpU+Tk5KSEhASz7ebj4uJMX6/Rrl27fO/l5uZWpD4WVkl/TiTlGsBl9cADD6hnz56SlGN1aWFt3LhR0dHRcnZ21rvvvmsWwGU1bNgwtWjRwlQHAAAAAKyBXClv5Ep3kSvdRa5EriSRK5U1JncBAAAAKLecnZ2Vni6lpUpr1yUVGMBlSk2VflyXpLTUuysvs27/bMsSEhJMj7NvQZ3d2LFj9dRTT+X6v/xCsTZt2qhevXp5Xj948KAkqXHjxmrVqlWe5R577LEcdUpSZuiXmz59+pjCwsL0pWbNmqbHJf2Hf58+fXJsVZ+padOmpscDBgzIs43McnFxcbp9+7bZtcxArGHDhgV+nUFm4Hj69GmlZ/0OilzExcXp6tWrZqFvZqh28eJFU4iVGy8vrzz7YjAY1KxZM0lSeHh4vn3ITVpamvbv3y9J6tevX77BYdWqVU2rAE+ePGk67+bmZlopuGXLlnyfS2kp6c9JbmJiYnT58mWzID8zxM266rsoMj+Xfn5++X7VQmYZyfw9AgAAAIDiIFfKG7nSn8iVyJXIlXKWI1cqfXwtIwAAAIByy9HRUfEJUuytDAUesDCB+//2H0jVrVsZcnaxU2VXxxLqoXW5urqaHue3SrI4sv4hn11KSoquXLki6e7W9Pnx8fGRg4OD0tLSdP78eav2MTtHR8d8++3g4KBmzZrp8OHDunDhgsXttm3bVvXr19e1a9f0ySefaOvWrerdu7f8/PzUvHlzU0BjDffdd1+e17KuYs1v9VvWcgkJCWbHZ86ckSRdunRJXbp0sahPqampiouLy7GaNywsTN999532799vtgo1u4yMDMXFxeUZrjRq1Cjf+1erVk2SefhsqYsXLyopKUmStGDBAi1YsMCielmfj5OTkwYMGKCff/5Zv/76q0JCQtS/f3916NBBbdq0yXVlaEkr6c9JpmPHjumHH37QwYMHFRcXl2dbWVd9F0Xm5zIwMNDiz2V+nzkAAAAAKAxyJesjV/oTuRK5ErkSuZI1MbkLAAAAQLlkZ3d3I+L0NCn4WKoKWAiWQ3q6dPRYqgb0cza1l7ktvK3KukV3QX/8/vbbb2bHixcv1pIlSwq8R25/kGfKuhqroNVQDg4OcnNz082bN/P9I94aqlWrlueqs0yZ/S1MXxwcHPTRRx/pzTff1O+//272VQDOzs7y8/PTI488ogEDBhT7Kxjy2jZcktnqwPxWA2ctl31lZExMTJH6lRlkZVq/fr0++OCDAldeZkpOTs7zWkErmzOfj6X3yio6OrrQdaScz3fq1Km6ffu2AgICFBERoRUrVmjFihWyt7eXj4+P+vfvr2HDhhX76xMsVdKfE8nynxVS/u9vQdLS0ixa4Zld9vcIAAAAAIqCXCk237LkSubIlciVLEGuRK5UkpjcBQAAAKBcyvxD0miUEhKMRWojIcEoo9G8PVuWdavxs2fPlsg9MsPNgljyehmNRXtfCqsk+9K4cWOtWLFCAQEBCggI0NGjR3X16lUlJycrMDBQgYGB+vbbbzVv3rwCg8mylBm2tGnTRm+88YbF9Tw9PU2Pf//9d1MAV716df3f//2fOnTooLp166py5cqmIHTDhg2aPXu2pNL7DGSXNVD/61//avHqvexfS1G5cmV99NFHOnXqlHbs2KHDhw8rLCxM6enpplD2f//7nz788EO1bt3aqs+hLBw8eNAUwNWvX19jxoxR27ZtVadOHVWqVMkUNi9atEhLly4t1r2yBoD9+/fXc889V6z2AAAAAKAwyJXIlTKRKxWMXIlcyRLkSiWLyV0AAAAAyqXMP+4NBsnVtWgBmqurQZn5TVmFBYXRpEkTubm56datWwoODlZiYmKO0KAkZV19WdAW1mlpaabVjJnboGfKGvTl97pbupLq1q1bSk9Pz3eVY+YKw+x9sYS9vb169+6t3r17S5Ju3Lih/fv3a82aNTpz5ozOnDmjDz74QB988EGh2y4tbm5uio6OVmxsrLy8vIrUxqZNm0yv84IFC9S4ceNcy5X0ilpLZF2NnJaWVuTnnKlly5amr4yIj4/XkSNHtHHjRu3evVsxMTF68803tXr16nxXQJYHP/30k6S7Y33x4sV5BsvWeI+dnZ3l4uKipKQk3blzp9jvEQAAAAAUBrkSuVImcqWCkSuRK1mCXKlkWTZ1Fqho7F2V5tHD7H+ydy24HgAAAEpN5goqewepXVtHFXb3cnt7ya+to+wdzNuzZQaDQY888ogkKSEhQZs2bSrV+zs5Oem+++6TJJ06dSrfsqGhoUpLS5OkHH9cu7r++W/r/LbPvnTpkkX9Sk1N1blz5/K8npaWZrrepEkTi9rMT82aNTVkyBD95z//kY+PjyQpICDAprf1btasmSTp8uXLun79epHauHDhgiSpadOmeQZwknTmzJkitW9NTZo0kaOjoyTpwIEDVm27cuXK6tmzpz744AM9+eSTku4Gs8eOHTMrVx5WbWd38eJFSVKHDh3yXTFsrfc483N5/Phxmx4/AAAAAO495ErkSpnIlQpGrmQ95ErkSkXF5C4AAAAA5VZqaqpcnCV3Nzt16exYqLpdOzvKzc1OLs532ykvxowZI2dnZ0nSwoULdeXKlVK9f6dOnSTd/WP95MmTeZZbv359jjqZ6tWrZ3p8+vTpPNvYtm2bxf3avHlzntd2795tWhGWvS/F4eDgID8/P0l3twK/c+eO1dq2tp49e5oe/+9//ytSG5nbnecXlty8eVN79uwpUvvW5OLioo4dO0qSjhw5UmBoXFSZ95DurvTNysnJSVL5+vmSGZzn9x6HhobmO/YlmX5GFfTcMz+XiYmJWr16dWG6CgAAAADFRq5ErpSJXCl/5ErkSpYgVypZTO4CAAAAUG4lJyfL3l5ycJT8h7nI0cIczslRGj7MRQ6Od1daJicnl2xHrahWrVp6/fXXJd3dxvull17S4cOHC6yX30rGwvD39zdtfz9nzpxcg6cDBw5ow4YNkqQWLVqoRYsWZtebNGli2sZ+9erVSklJydHGtm3btHPnTov7tXbtWgUHB+c4f/PmTX3++eeS7gYzgwYNsrjN4ODgfEPO1NRUHT16VNLdVaPu7u4Wt13a+vbtq0aNGkm6+1plDUlzc/78ee3du9fsXObq2itXruQawiQlJWnGjBk2M56effZZ0yrH6dOn6+rVq3mWTU9P19atWxUZGWk6d+3aNR05ciTfewQFBZkeZw2XpbsrcaW7X90QHx9f6P6Xhcz3+Pjx47p27VqO6zExMXrvvfcKbMfT01OScm0jK39/f9O4WbRokfbt25dv+WPHjpnGHAAAAAAUF7kSuVImcqX8kSuRK1mCXKlkOZR1BwAAAACgqNLT05Weni7XSvZq0thBUyZV1sefxCu/RT2OjtLkSZXVpLGDXCv92UZ5MnjwYEVGRmrx4sW6efOmJk6cKD8/P/Xo0UNNmzaVm5ubJCk6OlphYWHatWuXQkJCTPUzVz8VRdOmTTV69GitWLFC58+f1zPPPKOxY8eqWbNmSkpKUkBAgH744Qelp6fL0dFR06ZNy9GGg4ODhg0bpm+++Ubnz5/XxIkTNXbsWNWuXVs3b97Ur7/+qs2bN6t169Y6ceJEgX2qXr26nJ2d9eqrr2rUqFHq2rWrnJycFBISoq+//lpRUVGSpBdeeCHfLcGzO3jwoP773/+qbdu26t69u5o2bSp3d3clJyfrypUrWrt2rc6ePStJGjp0qBwcbPdPbHt7e73//vt64YUXlJCQoH/+85/69ddf9eCDD+r++++Xg4ODYmJiFBoaqoCAAJ04cUJjxowxW5n5yCOPaNWqVcrIyNDkyZP1f//3f2rdurWcnJx05swZfffdd7py5YratGmj48ePl+Gzvatt27Z67rnntGTJEoWHh+vpp5/WkCFD1LlzZ3l4eCg1NVXXr1/XiRMntHPnTkVFRWnFihWqVauWJCkiIkITJ05U48aN1bt3bzVv3twULv3xxx/avn27duzYIenuNvAtW7Y0u3/r1q0l3f1qjsyt9qtVq2YKBjMDL1syaNAgBQQEKCEhQRMmTNDYsWPl6+sro9GoEydO6Ntvv9XNmzcLHJt+fn46cOCAQkJC9M0336hr165ycXGRdPfnT+ZrXLlyZc2aNUuTJk1SSkqKpk6dqr59+6pPnz5q0KCBpLtfTXDmzBnt3r1bYWFhmjJlimllMwAAAAAUB7kSuZJErmQJciVyJUuQK5Us2/0JAQAAAAAWSEhIUJUqVVSlikGdOzlp7mw7rV2XpMADqcqardnb390yf/gwFzVp7KAqVSR7e6Pu3Ekou84Xw3PPPSdvb2999tlnunLlio4ePVrgyqM2bdpo4sSJatWqVbHuPXHiRCUlJWnNmjW6du2a5s6dm6NMlSpVNHv2bDVr1izP/h85ckQnT57UiRMn9Pe//93sup+fn6ZOnaqnnnqqwP44Oztrzpw5mjRpkr7++mt9/fXXOco8+eSTGjNmjIXP8E8ZGRkFvrZ9+vTRhAkTCt12aWvatKm++uorvfXWW7py5YoCAwMVGBiYZ/nKlSubHbdo0ULjx4/X4sWLFRcXpwULFuSoM2bMGDVp0sQmQjhJGj9+vKpWraoFCxYoISFB33//vb7//vtcyzo6Opq2vM/q4sWLunjxYp73aNSokebOnWsK1zJ17NhRrVq10smTJ7Vt27YcXweR32tfVvr166fBgwdr48aNioyM1Mcff2x23d7eXq+99pri4uLyDeHGjBmjlStXmj4nWT8rfn5+Wrhwoen4gQce0L///W+9++67unnzpnbs2GEKN3OT/XMJAAAAAMVBrkSuRK5kGXIlcqWCkCuVLCZ3AQAAACjXMjIylJCQIFdXV1WtapC3t4OmvFZFsbcyFHwsVQkJRrm6GuTX1lFubnZycJRcK90N4BISEpSRkVHWT6HIevbsqW7dumnv3r0KDAzUiRMnFB0drbi4ODk7O6tatWpq0qSJWrRoof79+6tx48ZWua+dnZ1ef/11DRw4UD/++KOOHTum6OhoOTo6qn79+uratatGjRql6tWr59mGi4uLvvjiC3333Xf65ZdfdPXqVTk4OKhhw4YaNGiQhg8frj/++MPiPjVv3lxff/21VqxYoX379ikqKkouLi5q3ry5nnzySXXr1q3Qz3Ps2LFq2bKlgoKCdPLkSd24cUMxMTGSpBo1aqhly5YaNGhQkdouK97e3vr222+1bds27d69W2fOnFFsbKwyMjLk5uam+++/X23btlXv3r3l6+ubo/64cePUvHlzff/99zp9+rQSExNVvXp1tWjRQsOHD1fnzp21cePGMnhmeRs1apT69eundevWKSgoSFevXtXt27fl5OQkT09PeXl56YEHHlDfvn3NvgKhXbt2+s9//qOgoCAdOXJEERERio6OVkpKiqpVqyZvb2/17dtXjz76qBxz+e4OOzs7/fvf/9b//vc/BQQE6Nq1a0pMTJTRaCzFZ19477zzjjp06KCffvpJoaGhSktLU40aNeTn56fHH39cLVu21OLFi/Nto3bt2vrvf/+rZcuW6ejRo4qKisr3axU6duyoNWvWaOPGjQoICFBYWJhu3bolOzs7ubu7q1GjRvLz81Pfvn3VsGFDaz9lAAAAABUYuRK5kkSuZClyJXKlgpArlRyD0dbffZSKzF8k+P/S4uVy8XOzU0mN/yo52NhMzvLSz3uUwWAw/ZKOjY21+V+mgC1iHAHWwVi6y87OTq6urrK3t1d6upSULKWnSUajZDBI9g6Si/PdlZbp6enlPoCDNGvWLG3evFl16tTRunXritUW4wgovnttHOX3HxJgjlwJKLx77WcmUBYYR4B1MJbuIleqeMiVANtyr40ja+dK7NwFAAAA4J6QkZGhO3fuyN7eXs7OzqrsmnPFU2pqqhITk5WedV99AAAAAAAAVGjkSgAAW8bkLgAAAAD3lMzVk9LdVZcGg0FGo5HVlAAAAAAAAMgXuRIAwBYxuQsAAADAPYvgDQAAAAAAAEVBrgQAsBV2Zd0BAAAAAAAAAAAAAAAAAEBOTO4CAAAAAAAAAAAAAAAAABvE1zICAAAAAMqlGTNmaMaMGWXdDQAAAAAAAJQz5EoAyhN27gIAAAAAAAAAAAAAAAAAG8TkLgAAAAAAAAAAAAAAAACwQUzuAgAAAAAAAAAAAAAAAAAbxOQuAAAAAAAAAAAAAAAAALBBTO4CAAAAAAAAAAAAAAAAABvE5C4AAAAAAAAAAAAAAAAAsEFM7gIAAAAAAAAAAAAAAAAAG8TkLgAAAAAAAAAAAAAAAACwQUzuAgAAAAAAAAAAAAAAAAAbxOQuAAAAAAAAAAAAAAAAALBBTO4CAAAAAAAAAAAAAAAAABvE5C4AAAAAAAAAAAAAAAAAsEFM7gIAAAAAAAAAAAAAAAAAG8TkLgAAAAAAyqFhw4apS5cumjVrVll3RYcPH1aXLl3UpUsXHT58uKy7AwAAAAAAgHyQKwHli0NZdwAAAAAAYLnDhw9r4sSJhaozcuRITZo0qYR6BAAAAAAAgPKAXAkAyid27gIAAAAAWIyVdBVHeHi46b3euHFjWXcHAAAAAACUc+RKFQe5EmBd7NwFAAAAAOWUv7+/RowYUWA5d3f3ku8MKrQOHTooMDCwrLsBAAAAAAAsRK4EW0GuBBSMyV0AAAAAUE5Vr15dXl5eZd0NAAAAAAAAlDPkSgBQfvC1jAAAAAAAAAAAAAAAAABgg9i5CwAAAAAqqEOHDumnn37SyZMnFR0dLenuqk0PDw+1bdtW3bp1U8eOHSVJ4eHh8vf3N6s/ceLEHG2+8847Gjx4sFX7OWHCBB09elR+fn5auHChLl26pJUrVyooKEg3b95U1apV1bZtW40ePVqtW7cusL3g4GCtW7dOwcHBio6OlpOTk+rVq6d+/frpmWeekZ1d7uugDh8+bHrO8+fPl5+fn9avX69Nmzbp0qVLSklJUYMGDTRgwACNGjVKLi4uFj2fvCxevFhLliyRpCJtTX/jxg3t2rVLhw8f1rlz53Tjxg2lp6fL3d1dvr6+evDBB9W/f/9cn2+XLl3Mjt9//329//77ZufGjRun8ePHS8r52nTo0CHXPiUkJGj16tXas2ePLl++rMTERLm7u6tVq1Z69NFH1aNHjzyfT/bXLTIyUitXrlRAQICioqLk7Oys5s2ba+TIkerWrVuhXqussj+X9u3ba8OGDdq4caN+//13paWlqVGjRnriiSf0yCOPmOqlpqZqw4YN2rRpk65cuaK0tDR5eXlp5MiRGjBgQIH3jYuL0+rVq7Vv3z5duXJFCQkJcnNzU/PmzTVo0CD17ds3z7qJiYkKCAhQUFCQzpw5o/DwcCUlJalq1apq3LixevTooeHDh8vV1TXPNjLf88z3NSQkRN9++62Cg4MVGxsrd3d3dejQQc8884waN25s6csJAAAAALhHkSuRK5Er5USuRK5UUpjcBQAAAAAV0Keffqrvvvsux/mIiAhFRETo1KlT2rRpk7Zu3VoGvcvbvn379PbbbysxMdF07ubNm/r111+1a9cuvfLKKxozZkyudTMyMjRv3jytXr3a7HxKSopCQ0MVGhqqFStWaPbs2XrggQfy7UdaWpomT56cIxwLCwtTWFiYtmzZoi+++EI1a9Ys4jMtnvT0dA0dOlQZGRk5rkVFRSkqKkp79+7Vhg0bNHfu3HzDGWs5e/aspk6dqqioqBz92blzp3bu3Kk+ffpo5syZcnZ2zret4OBgvfHGG7p165bpXHJysg4cOKADBw7or3/9q5566qli9zktLU2vv/66AgICzM6HhIRo5syZOn36tCZPnqy4uDi98cYbOnr0qFm5EydO6MSJE7p69aqeffbZPO+zb98+vfvuu7p9+7bZ+Rs3bmjv3r3au3evunfvrn/84x+5vleTJ0/OcW9Jio2N1dGjR3X06FGtWbNG8+bNU6NGjQp83qtWrdKnn36q9PR007moqCht2bJFu3bt0ieffCI/P78C2wEAAAAA3JvIlf5ErkSulBdyJXIla2JyFwAAAABUMAEBAaYArmnTpvL391ejRo1UpUoV3blzR5cuXVJQUJBOnjxpqlOrVi2tWLFCp0+fNq20e+edd9S8eXOztmvVqlVi/b5x44beffdd2dvba8KECWrfvr2kuyvili9frvj4eH322WeqW7durqvR5s+fbwrg6tWrp7Fjx8rHx8e0Om316tW6ffu2pkyZoqVLl8rb2zvPvnz11VcKCQlR586d5e/vr9q1a+uPP/7QmjVrFBQUpN9//12TJ0/W0qVL5eBQ+n96G41GSVLHjh3VtWtXeXl5yd3dXQkJCQoPD9dPP/2kEydOKCgoSB999JFmzJhhVn/FihW6ceOGXn31VUnSiy++qF69epmVqV69usX9iYyM1F//+lfFxcXJYDDo0Ucf1cCBA+Xm5qaLFy9q5cqVOnfunHbt2qVZs2Zp9uzZebZ18+ZNTZs2TXZ2dnr55ZfVtm1bOTo66tixY1q6dKlu376tBQsWqGvXrmrSpInFfczNokWLdOrUKT300EN66KGHVKNGDV25ckX/+c9/dOnSJf3www/q0aOHVq1apePHj8vf31+9e/eWm5ubzp07p0WLFikqKkqLFy9Wr169cu3PgQMH9Prrrys9PV1169aVv7+/WrZsqcqVKysqKkrbt2/Xli1b9Ntvv2nWrFmaO3dujjbS09Pl5eWlnj17qnnz5qpZs6aMRqMiIiK0e/du7dixQ+Hh4XrjjTf0zTff5BtyHjhwQKdOnVLTpk01cuRIeXl5KTk5Wbt27dIPP/ygpKQkzZw5U6tWrZKjo2OxXl8AAAAAQPlDrkSuRK5kGXIlciVrYnIXAAAAgFKVnGwscl17e8nBwVCq7aakGGUsRNPOzrm3UxJiYmJ0/vz5Ass1bNjQLAjasWOHJKlOnTpatGhRjhVb7du31/Dhw81Wrzk4OMjLy0uxsbGmc3Xr1pWXl1cxn4Xlrly5oipVqmjx4sVm23e3bt1avXr10vjx4xUfH6958+apR48eZgFBWFiYvv32W0mSl5eXvvzyS1WtWtV0vWPHjurXr59efPFFpaamas6cOVq6dGmefQkJCdGwYcM0bdo00zlfX1/17t1bs2fP1oYNGxQaGqp169bp8ccft+bLYBF7e3t9//33uu+++3Jca9++vQYPHmzanv/nn3/Ws88+q/vvv99UxsvLS5UqVTIde3p6Fuu9/vTTTxUXFydJevPNNzV06FDTNV9fX/Xv31+TJk3S4cOHtWPHDj366KN5boF/+fJl02c3a+jbokULNW/eXBMmTFB6errWrVunyZMnF7nPknTq1ClNmjRJI0eONOtv+/bt9eSTTyo+Pl7vvvuuYmNjNXfuXPXu3dusnK+vr5555pk8+5OYmKiZM2cqPT1dnTt31gcffGD2tQs+Pj7q0aOH2rVrp7lz52rXrl06ePCgOnXqZNbOO++8Y/b+ZWrVqpUGDBigIUOG6LXXXtOlS5e0detWs9c/u5MnT6pbt2764IMPzMZQu3bt5Obmpq+++koRERH67bff1KdPH4tfSwAAAACwBnIl6yFXuotcKSdyJXIliVzJ1jC5CwAAAECp2rKt6HVbt5KaNM792q+7pJSUorXr00zy9cn9WsA+KduO1vl6bEjR+lAUa9eu1dq1ay0qV69ePdPxzZs3Jd39Az+/bdPd3NyK30kr+8tf/mIWwGVq0qSJnn32Wc2fP19RUVHas2eP+vfvb7q+du1a01byb775plkAl6lXr14aMWKEVq1apZCQEIWEhKhFixa59qNGjRp67bXXcr02adIkBQQEKCYmRmvWrCmTEM5gMOQawGX13HPPac2aNYqNjdXevXutst18bm7cuKHdu3dLkrp06ZJrAOTk5KS3335bTzzxhNLT07V69eo8QzhJmjJlSq6redu1a6eWLVvq5MmTCg4OLnbfW7ZsaRbAZfLw8FDv3r21efNmxcTEaODAgWYBXCZvb2+1bdtWR48ezbU/GzduVHR0tJydnfXuu++aBXBZDRs2TOvXr1dISIg2btyYI4TLLYDL6oEHHlDPnj21e/du7d69O98QztnZWe+8806uqyeffPJJLV26VKmpqQoODiaEAwAAAFDqyJWsh1zpT+RK5siVyJWyIleyDXZl3QEAAAAAQOmqWbOmJCk4OFhXr14t495YLnPb9bwMHjxYBsPdFa4HDx40u5Z53LhxY7Vq1SrPNp588skcdXLTv3//PAMTV1dXUwB48eJF3bhxI892SktGRoaioqJ06dIlnT9/XufPn9fvv/9uCrLCwsJK7N6HDx9Wenq6JGnIkLxT6nr16umBBx6QJB05csRUJ7uqVauqe/fuebbj6+srSQoPDy9ql00GDhyY57WmTZuaHg8YMKDAcrn1Z8+ePZIkPz8/1ahRI9+++Pn5SZLZ11rkJSYmRpcvXza91+fPn5e7u7ukgt/rTp065dmXypUrm8Jda7y+AAAAAIDyh1yJXIlcyTLkSubIlYqHnbsAAAAAoJwaN26cxo8fX+h6jzzyiDZv3qxbt27pqaeeUs+ePdWlSxe1bdu2wFV5ZalevXqmICE31atXV926dRUeHm72tQIpKSm6cuWKpLsr5vLTvHlzOTg4KC0tLd+vJshr5WVu18+fP28KPkuT0WjUli1btGHDBp06dUrJycl5ls36tQjWduHCBdPjgl7/li1bav/+/UpKStK1a9dyXTl43333yc4u77Vq1apVkyQlJCQUscd/ym/lYtZVupaUy60/Z86ckSQFBgaqS5cuFvUpc4V0dseOHdMPP/yggwcPmr6qIDcFvdcNGzbM97o1X18AAAAAQNkhVzJHrmSOXIlcKTfkSmWHyV0AAAAAUMF06tRJU6dO1eeff67k5GRt375d27dvlyR5enqqR48e8vf3l7e3dxn31Fz16tULLFOjRg2Fh4ebhRC3s3z/QUGr2BwdHeXm5qabN2/mG2QU1Jes98mvnZKSnJysadOmaf/+/RaXLylZn39Br7+Hh0eu9bJydnbOt43MVbaZX5dQHPndK/M+lpbL3p+0tDSzz6alkpKScpxbvHixlixZYlH9gt7rvFYOZ8p8PnmtgAUAAAAA3NvIlfJGrmR95ErkSriLyV0AAAAAStXDDxa9rr193tf69SmZdnt0k4zGordtqx5//HH169dP27ZtU1BQkI4fP647d+4oKipKP/74o9atW6dnnnlGL730Ull31SRr6JEXYwFvljXasKQdS9ooScuWLTMFcH5+fnr88cfl4+MjDw8POTs7m1YovvTSSwoODi7z/maylX6UhqwhVv/+/fXcc88VqZ2DBw+aArj69etrzJgxatu2rerUqaNKlSrJ/v//gFu0aJGWLl1a/I4DAAAAQBkiV7IN5EpFb8OSdso6HyFXsn3kShUPk7sAAAAAlCpn54JDEFtq18mpZNq1BTVq1NCoUaM0atQoZWRkKDQ0VLt27dKaNWt0+/ZtLVu2TC1atFCvXr3KuquSpOjo6ALLxMTESPpzi2/JfJvzvLYez5SWlmZa2Ze1jcL2JbMfubWTGYAVFDjltpLOEkajUevXr5cktW3bVvPnz89zu/mirPArrKzPPzo6WnXq1MmzbNbXNb/X/17g7OwsFxcXJSUl6c6dO/Ly8ipSOz/99JOku5/zxYsX57mKtSxW+gIAAACAtZEr2Q5ypZzIlayPXCl35EoVT95fJgpUZA6VleQ9zex/cqhc1r0CAAAASoydnZ18fX310ksv6fPPPzedz9xWP5MlKxRLSnh4uG7dupXn9ZiYGF2/fl2SzAINJycn3XfffZKkU6dO5XuPkJAQpaWl5Wgjt3IFtZMpezuurq6SCg7ALl26lO/1vMTFxZnCxv79++cZwCUkJOR7D2u9102aNDE9tuT1l+5u4V6vXj2r3N+WNWvWTJJ0/PjxIoeuFy9elCR16NAh368nOHPmTJHaBwAAAACgIORKd5Er/YlcqeSRK1UsTO4CAAAAAJjx9fU1rW7LHno5OTmZHqemppZqv4xGozZv3pzn9U2bNplWLXbq1MnsWubxxYsXdfLkyTzbWL16dY46ufn111/zDE0SExO1Y8cOSVLjxo1Vs2ZNs+uZ4dLly5cVHx+faxsxMTE6ePBgnvfPT2aIKOW/SnPDhg1mZbOz1nvdvn170xbuGzZsyLNcRESEgoKCTHUcHO79zcZ79uwp6e5nJutnrzAy38P83uvQ0NB8P/cAAAAAAFgLuZJ5ndyQK1mOXClv5EoVC5O7AAAAAKCC+eWXX/L9g/306dOmrbazr3LLGihdvXq1wHt16dJFXbp00bBhw4rW2Wz++9//5roq8OLFi1q2bJmpj9m3/Pf39zetNJwzZ47u3LmTo42AgABTENKiRQu1aNEiz37cvHlTn332Wa7X/v3vf5u2z/f3989x3c/PT9LdYGvVqlU5rqelpWn27NlKTk7O8/75qV69uukrA7Zv355rgBYSEqKvvvoq33bc3Nzk6OgoybL3Oi+enp7q3bu3JCkwMDDXIC41NVXvv/++KVB6/PHHi3y/8sTf31/u7u6SpEWLFmnfvn35lj927JiOHj1qdi5z9fDx48d17dq1HHViYmL03nvvWaW/AAAAAACQK5ErkSvZBnKliuXen64IAAAAAPeomJgYnT9/vsByzs7OatCggel4/vz5+vDDD9WzZ0/5+fnpvvvuU6VKlXTr1i0dO3bMFAzZ29vrscceM2urTp06qlWrliIjI7Vy5UrVqlVL999/v2kFXY0aNVS5csl8pfl9992nmJgYPf/88xo7dqzat28vSTpy5Ii++eYbU7A2efJkU3iUqWnTpho9erRWrFih8+fP65lnntHYsWPVrFkzJSUlKSAgQKtWrVJ6erocHR01bdq0fPvSvHlzrV27VuHh4fL39ze9JmvXrlVgYKCku1ujDx8+PEfd7t27q06dOoqIiNCiRYsUGxurPn36yNnZWefPn9cPP/ygc+fOqWXLlgVuN58bOzs7PfTQQ1q9erVCQ0P14osvavTo0WrQoIHu3Lmjffv2ae3atapUqZJq1qypy5cv59qOg4ODmjdvruPHj2vjxo3y8fGRt7e3aeVjtWrV5ObmZlGfXnvtNR06dEhxcXH65z//qePHj2vAgAFyc3PT77//rpUrVyo0NFTS3S3/u3XrVujnXR5VrlxZs2bN0qRJk5SSkqKpU6eqb9++6tOnj2nM3rhxQ2fOnNHu3bsVFhamKVOmmIJcSRo0aJACAgKUkJCgCRMmaOzYsfL19ZXRaNSJEyf07bff6ubNm2rdurVOnDhRVk8VAAAAAGBjyJXIlXJDrlR+kCtVLEzuAgAAAIByau3atVq7dm2B5by9vbV8+XKzc7dv39bmzZvz3I7e2dlZb7zxhnx9fXNce+aZZ/Svf/1L4eHh+vvf/2527Z133tHgwYML8SwsV7NmTb322mt6++23tWDBghzX7ezsNHHiRPXr1y/X+hMnTlRSUpLWrFmja9euae7cuTnKVK1aVe+//76aNWuWb19eeuklrVy5UoGBgabQLauGDRvq448/znULeEdHR7333nuaNGmSEhMT9d133+m7774zXbe3t9err76q27dvFymEy+zf8ePHFRoaqpCQEE2fPt3serVq1TRnzhwtWrQozxBOuvteT506Vbdu3dKMGTPMro0bN07jx4+3qD+1atXS559/rqlTpyoqKkobNmzIdaVlnz59ctznXvfAAw/o3//+t959913dvHlTO3bsMH39Qm6yh9z9+vXT4MGDtXHjRkVGRurjjz82u25vb6/XXntNcXFxhHAAAAAAABNyJXPkSub9I1cqH8iVKg4mdwEAAABABfPll18qKChIQUFBunjxoqKjoxUXFycXFxc1aNBAHTt21IgRI3JsnZ9pxIgRqlGjhtatW6fQ0FDFxcUpPT29VPrevXt3/fe//9WKFSt06NAh3bx5U1WqVFG7du00ZswYtW7dOs+6dnZ2ev311zVw4ED9+OOPOnbsmKKjo+Xo6Kj69eurX79+euaZZ2RnZyej0ZhvPxwcHPTJJ5/oxx9/1M8//6xLly4pNTVV9evX14ABAzR69Gi5uLjkWb9du3ZatmyZli1bpkOHDikmJkbu7u5q3bq1Ro8erTZt2mjx4sVFfp2qVKmiRYsWaeXKldqxY4euXr0qe3t71apVS927d9fIkSNVq1atAtvp3r27vvjiC33//fc6ffq0YmJiTFvcF5aPj4++//57rV69Wrt379bly5eVlJQkd3d3tWzZUo8++qh69uxZpLbLu44dO2rNmjXauHGjAgICFBYWplu3bsnOzk7u7u5q1KiR/Pz81LdvXzVs2DBH/XfeeUcdOnTQTz/9pNDQUKWlpalGjRry8/PT448/rpYtWxbr8wQAAAAAQCZyJXIlciXbQq5UMRiMBf1kQYWQ+b29KGfS4uVy8XOzU0mN/yo5lMx2pTBnMBhM32McGxtb4D/UAOTEOAKsg7GEe92ECRN09OhR+fn5aeHChSVyD0vG0eHDhzVx4kRJd7+CoEOHDiXSF6C8utd+H1WvXr2su1BukCsBhXev/cwEygLjCLAOxhLudeRKQPlwr/0+snauZGfV1gAAAAAAAAAAAAAAAAAAVsHkLgAAAAAAAAAAAAAAAACwQUzuAgAAAAAAAAAAAAAAAAAbxOQuAAAAAAAAAAAAAAAAALBBTO4CAAAAAAAAAAAAAAAAABvkUNYdAAAAAAAgPwsXLizrLkiSOnTooMDAwLLuBgAAAAAAACxErgTgXsDOXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAoMQtXrxYXbp0UZcuXcq6KxVaeHi46X3YuHFjWXcHAAAAAACgQORKtoFcqew4lHUHAAAAAABFl5GRob179yowMFAnTpzQzZs3dfv2bTk5Ocnd3V1eXl5q3bq1+vTpo/vvv7+su2uThg0bpoiICM2ZM0f+/v5lcu86depo3bp1BZYPDw839XHQoEGaMWNGnm1mV6lSJVWpUkVubm7y9vZW8+bN1adPH9WqVavA+y5evFhLliyRJM2fP18dOnQosA4AAAAAALBt5ErFR65ErgSUBiZ3AQAAAEA5tW/fPv373//WpUuXclxLS0tTQkKCwsPDtXfvXi1YsEB+fn6aMGGC2rRpUwa9RVlLTExUYmKioqKiFBYWpp9//ln//ve/1aNHD7366quqV69eWXex2LKGlO+8844GDx5cxj0CAAAAAMA2kSuhMMiVgLLF5C4AAAAAKIe++eYbLVy4UEajUZLUpk0b9ejRQz4+PnJzc1NycrKio6N1/Phx7du3T5cuXdLRo0e1dOlSffrpp2XbeZQKT09Ps/c6LS1Nt2/f1vXr13X8+HHt3LlTd+7c0e7du3Xo0CG9++676tWrV4n1Z/z48Ro/fnyJtQ8AAAAAACxDroSCkCsBtoXJXQAAAABQzmzevFkLFiyQJLm7u2vmzJnq3LlzrmX79u2rv/3tb9q7d68WLlxYmt1EGbO3t5eXl1eu14YMGaLXXntN//nPf/Ttt98qPj5e06dP11dffSVfX99S7ikAAAAAACgt5EqwBLkSYFvsyroDAAAAAADLRUZG6oMPPpAkVapUSQsXLswzgMtkMBjUq1cvLVu2TEOGDCmNbqIcqFy5sl599VW9/PLLkqTk5GT985//LONeAQAAAACAkkKuBGshVwJKFzt3AQAAAEA58u233yo5OVmS9OKLL6px48YW13V2dlb//v1zvdalSxdJ0rhx4zR+/HgdOnRIa9eu1cmTJ3Xz5k15enpq3bp1ZnWCg4O1bt06BQcHKzo6Wk5OTqpXr566deumkSNHqnr16rnea+PGjXr//fclSWvXrlW9evVyLRceHi5/f39J0jvvvKPBgwebXZ81a5Y2b96sOnXqaN26dYqMjNTKlSv122+/KTIyUpUqVVLz5s31xBNPqFu3bha/TtlFRUXphx9+0IEDB3Tt2jUlJyerWrVqql69upo0aaLOnTurb9++qly5cpHvUZbGjh2r3bt369SpUwoNDdW+ffuK9XrlZfHixVqyZIkkKTAwMMf1YcOGKSIiQoMGDdKMGTP0+++/a+XKlQoKCtLNmzdVpUoVtWnTRmPHjlWrVq1y1M/8DGd6//33TZ+zTJmf7+wuXbqk1atX69ChQ4qMjFRaWpo8PDzk5+enJ554Is9Vp4cPH9bEiRMlSfPnz5efn582bdqkn3/+WRcvXlRsbKweeeQRDR482BR2vvnmm3rsscfyfa2WL1+u+fPnS5L+97//qWnTpqZrN27c0K5du3T48GGdO3dON27cUHp6utzd3eXr66sHH3xQ/fv3l50d6/kAAAAAAObIlf5ErmQd5ErkSigdTO4CAAAAgHLCaDTq559/liS5urqW2GrJhQsX6uuvv87zekZGhubNm6fVq1ebnU9JSVFoaKhCQ0O1evVqzZ49u8DVn9Zy+vRpTZ48WTExMaZzycnJ2r9/v/bv36+RI0dq0qRJhW43ODhYU6ZMUXx8vNn56OhoRUdH6/z58/rll1/k7u6uHj16FPt5lAWDwaCRI0dqxowZkqTdu3eXSAhXGDt37tTMmTOVlJRkOhcTE6Pdu3crICBA7733ngYOHGiVey1dulRLlixRenq62fnw8HCFh4dr8+bNeu6553IN77JKSUnRq6++qoMHD+a45ufnpzp16igiIkJbt24tMITbtm2bJMnLy8ssgEtPT9fQoUOVkZGRo05UVJSioqK0d+9ebdiwQXPnzpWrq2u+9wEAAAAAVBzkSnkjVyo6ciVyJZQOJncBAAAAQDlx4cIFxcbGSpLatm1bIiv6du/erbCwMHl5eWn06NFq0qSJkpOTFRoaaiozf/58UwBXr149jR07Vj4+PkpMTNTevXu1evVq3blzR1OnTtXSpUvl7e1t9X5mlZycrLfeekvx8fF6+umn1a1bNzk6OurUqVP65ptvdOPGDX3//feqXbu2xowZY3G7KSkpmj59uuLj4+Xq6ip/f3916NBB1atXV1pamiIiInTy5Ent3LmzBJ9d6ejUqZPpcXBwcNl1RFJYWJh27NghDw8PjRkzxrS6MTAwUMuXL1dycrLmzp2rjh07mq3iXbFihW7cuKFXX31V0t0VyL169TJrO/uq30WLFmnp0qWSpNatW2vIkCFq0qSJHBwcTKsuT5w4oSVLlsjNzU1PPvlknv2eP3++wsLC1LNnTz366KOqU6eOoqOjFR8fL4PBoIEDB2r58uUKDg5WZGSkatWqlWs7Fy9e1Llz5yRJDz30kNk1o9EoSerYsaO6du0qLy8vubu7KyEhQeHh4frpp5904sQJBQUF6aOPPjIFqwAAAAAAkCvljlyp+MiVyJVQ8pjcBQAAAKB0pcUXXKY8cyi5LdTDwsJMj318fErsHh07dtS8efPk5ORkOu/n52e6/u2330q6u/rryy+/VNWqVU3lOnTooM6dO2vKlClKTU3VnDlzTCFHSYmJiZGDg4M+//xzUz8lqWXLlurbt6/GjRunyMhILVq0SA8//LBq1KhhVn/dunUyGAxyd3c3O3/8+HFFRUVJurtVf/YVlK1atdKAAQP0yiuvmL7SoKjS09N1/vz5AsvduHGjWPfJS/Xq1VWrVi1FRkbq6tWrMhqNMhgMJXKvgoSGhsrX11dffPGFqlSpYjrfqlUrNWjQQO+9957i4+O1ZcsWjR492nTdy8tLlSpVMh17enrKy8srz/uEhIRo2bJlkqS//OUvevHFF82u+/r6auDAgZo1a5a2bNmiL7/8Uo888ojZ5z2rsLAwPffcc3rhhRdyvf7QQw9p+fLlysjI0C+//KKnnnoq13JbtmyRdHfl64MPPmh2zd7eXt9//73uu+++HPXat2+vwYMHm76m4Oeff9azzz6r+++/P8/XAAAAAADKHXKlIiNXyh25UvGRK5EroeQxuQsAAABAqXK5+HlZd6FEJXlPK7G2M1dXSjlXimV34cIF02qs7OrVq2cWVmRlZ2ent956yyyAy2rt2rWmrbvffPPNXAOJrl27avDgwVq/fr1CQkIUEhKiFi1a5Nvf4ho2bJhZAJfJ09NTf/vb3/TOO+8oKSlJmzdv1v/93/9Z1ObNmzdNj3NrO5ODg4McHIr353VUVFSeoUxpcXNzU2RkpNLT05WQkFAiK3gt9fbbb5sFcJkeeughzZ8/X1FRUQoODjYL4QorMxDz9fXNMzizs7PTlClT9OuvvyohIUG//vprnlvf33///Ro3blye92vatKm8vLx0/vx5bd26Nc/3+5dffpEktWvXTnXq1DG7ZjAYcg3gsnruuee0Zs0axcbGau/evWX+uQIAAAAAayJXKjpypbyRKxUfuVJO5EqwJruy7gAAAAAAwDIJCQmmx3mFaJnGjh2rp556Ktf/hYSE5FmvTZs2qlevXp7XDx48KElq3LixWrVqlWe5rEFFZp2SNHjw4Dyv9enTxxQWFqYvNWvWND3euHFj0TtXTmT9TMXHl91KaC8vrzy/csFgMKhZs2aSpPDw8CLfIy0tTfv375ck9evXL9/VpFWrVjWt1Dx58mSe5QYMGCB7e/t87/vwww9LuruK9OLFizmuHz9+3PS8sm+dn5uMjAxFRUXp0qVLOn/+vM6fP6/ff//dtDV/1lXZAAAAAICKjVwpb+RKxUeulDtyJVgLO3cBAAAAQDnh6upqepyYmFgi92jatGme11JSUnTlyhVJd7emz4+Pj48cHByUlpZm0bbwxeHo6Jhvvx0cHNSsWTMdPnxYFy5csLjdtm3bqn79+rp27Zo++eQTbd26Vb1795afn5+aN28uR0dHa3RfklSnTh2tW7euwHLh4eHy9/e32n2zyhryluXqykaNGuV7vVq1apLM+1tYFy9eVFJSkiRpwYIFWrBggUX1sq66zS6/z2CmBx98UAsWLJDRaNTWrVv10ksvmV3funWrpLuf6b59++bahtFo1JYtW7RhwwadOnUq369uyLoqGwAAAABQsZEr5Y5cyTrIlQpGroTiYHIXAAAAAJQTbm5upscF/XH922+/mR0vXrxYS5YsKfAeuW2Hn+n27dumxzVq1Mi3HQcHB7m5uenmzZuKi4sr8L7FUa1atQK3r8/sb2H64uDgoI8++khvvvmmfv/9d9NXAUiSs7Oz/Pz89Mgjj1i0sq48uHXrliTJ3t6+TEM4Z2fnfK9nroZMT08v8j2io6OLVC8zuMtNfmMnU+3atdWuXTsdPXpU27ZtMwvh0tLStGPHDkl3v4Ii63jPlJycrGnTpplWhxYkv4AOAAAAAFCxkCvljlzJOsiVCkauhOJgchcAAACAUpXU+K9l3YVyK+uW4mfPni2Re9jZ2VlULr/txjMZjcbidsciJdmXxo0ba8WKFQoICFBAQICOHj2qq1evKjk5WYGBgQoMDNS3336refPmFRhM2rLo6GhFRUVJkho2bFjGvSl5GRkZpsd//etf1aVLF4vq5fe1FZaOnYceekhHjx5VeHi4Tpw4odatW0uSgoKCTOF6XlvnL1u2zBTA+fn56fHHH5ePj488PDzk7Oxs6sNLL72k4ODgUhuDAAAAAFBayJWKjlwpd+RKxUeuRK6EksfkLqA8c6isJO9pZd0LAACAwnEou5Vb5V2TJk3k5uamW7duKTg4WImJifmGAtaWdQVZftuIS3dXi2WuZszc7jxT1rAiv5Agv9VsWd26dUvp6en5rnKMiYnJtS+WsLe3V+/evdW7d29J0o0bN7R//36tWbNGZ86c0ZkzZ/TBBx/ogw8+KHTbtiIoKMj0uG3btmXYk9KRdfViWlqavLy8Su3e/fv317x585SSkqKtW7eaQrgtW7ZIuvs1Gd27d89Rz2g0av369ZLuvkfz58/PM/jLuhoaAAAAAO4p5EpFRq6UO3Kl4iNXIldCybNs+h8AAAAAoMwZDAY98sgjkqSEhARt2rSpVO/v5OSk++67T5J06tSpfMuGhoYqLS1NknIEHK6urqbH+YUFly5dsqhfqampOnfuXJ7X09LSTNebNGliUZv5qVmzpoYMGaL//Oc/8vHxkSQFBARYHBraGqPRqB9++MF0nBk2lkeWrLaV7n4OHB0dJUkHDhwoyS7lULVqVXXt2lWStGPHDqWlpSkpKUl79+6VJPXt21cuLi456sXFxZnC7/79++cZwCUkJFg8dgAAAAAAFQe5Uu7IlYqHXIlcCaWDyV0AAAAAUI6MGTNGzs7OkqSFCxfqypUrpXr/Tp06SZIuXryokydP5lkucyVY1jqZ6tWrZ3p8+vTpPNvYtm2bxf3avHlzntd2795tWu2ZvS/F4eDgID8/P0lSenq67ty5Y7W2S9Py5csVEhIiSfLx8bF4K3lb5OTkZHqcmpqaZzkXFxd17NhRknTkyJECQ2Vry9wePyYmRkFBQdq9e7cSExPNrmWXGWpL+a8+3rBhg1lZAAAAAAAykSvljlyp6MiVyJVQOpjcBQAAAADlSK1atfT6669LkuLj4/XSSy/p8OHDBdaz1nba/v7+ppVdc+bMyTV4OnDggDZs2CBJatGihVq0aGF2vUmTJqZt7FevXq2UlJQcbWzbtk07d+60uF9r165VcHBwjvM3b97U559/Lulu8DJo0CCL2wwODs435ExNTdXRo0cl3V016u7ubnHbtiAhIUGfffaZFixYIOnu6/PWW2+Vca+Kx83NzbRy8urVq/mWffbZZ00rMqdPn55v+fT0dG3dulWRkZFW6WePHj1MX0exdetWbd26VZLk4eGhDh065FqnevXqpjrbt2/PNWQMCQnRV199ZZU+AgAAAADuPeRKuSNXKjxyJXIllC6Hsu4AAAAAAKBwBg8erMjISC1evFg3b97UxIkT5efnpx49eqhp06Zyc3OTJEVHRyssLEy7du0yraCTZFqhWRRNmzbV6NGjtWLFCp0/f17PPPOMxo4dq2bNmikpKUkBAQH64YcflJ6eLkdHR02bNi1HGw4ODho2bJi++eYbnT9/XhMnTtTYsWNVu3Zt3bx5U7/++qs2b96s1q1b68SJEwX2qXr16nJ2dtarr76qUaNGqWvXrnJyclJISIi+/vprRUVFSZJeeOEF1ahRw+LnevDgQf33v/9V27Zt1b17dzVt2lTu7u5KTk7WlStXtHbtWp09e1aSNHToUDk42Naf2Onp6Tp//rzpOC0tTXfu3NH169d17Ngx7dy50xSiVqlSRTNnzjR9HUB55eDgoObNm+v48ePauHGjfHx85O3tbXpvqlWrZhofbdu21XPPPaclS5YoPDxcTz/9tIYMGaLOnTvLw8NDqampun79uk6cOKGdO3cqKipKK1asUK1atYrdTycnJ/Xp00cbNmzQnj17TIHawIEDZW9vn2sdOzs7PfTQQ1q9erVCQ0P14osvavTo0WrQoIHu3Lmjffv2ae3atapUqZJq1qypy5cvF7ufAAAAAIB7D7mSOXKl3JErkSvBttjWTwgAAAAAgEWee+45eXt767PPPtOVK1d09OhR02q/vLRp00YTJ05Uq1atinXviRMnKikpSWvWrNG1a9c0d+7cHGWqVKmi2bNnq1mzZnn2/8iRIzp58qROnDihv//972bX/fz8NHXqVD311FMF9sfZ2Vlz5szRpEmT9PXXX+vrr7/OUebJJ5/UmDFjLHyGf8rIyCjwte3Tp48mTJhQ6LZLWlRUVIGvn729vXr27KlXX31VdevWLaWelaxnnnlGU6dO1a1btzRjxgyza+PGjdP48eNNx+PHj1fVqlW1YMECJSQk6Pvvv9f333+fa7uOjo5m2/MX18MPP6wNGzaYts3PPJefl156ScePH1doaKhCQkI0ffp0s+vVqlXTnDlztGjRIkI4AAAAAECeyJX+RK6UO3IlciXYFiZ3AQAAAEA51bNnT3Xr1k179+5VYGCgTpw4oejoaMXFxcnZ2VnVqlVTkyZN1KJFC/Xv31+NGze2yn3t7Oz0+uuva+DAgfrxxx917NgxRUdHy9HRUfXr11fXrl01atQoVa9ePc82XFxc9MUXX+i7777TL7/8oqtXr8rBwUENGzbUoEGDNHz4cP3xxx8W96l58+b6+uuvtWLFCu3bt09RUVFycXFR8+bN9eSTT6pbt26Ffp5jx45Vy5YtFRQUpJMnT+rGjRuKiYmRJNWoUUMtW7bUoEGDitR2WXBxcVGVKlXk5uYmb29vtWjRQn379pWnp2dZd82qunfvri+++ELff/+9Tp8+rZiYGKWlpeVZftSoUerXr5/WrVunoKAgXb16Vbdv35aTk5M8PT3l5eWlBx54QH379rXqVyT4+fmpVq1api3577//fvn6+uZbp0qVKlq0aJFWrlypHTt26OrVq7K3t1etWrXUvXt3jRw50iorQAEAAAAA9z5ypT+RKxWMXCl35EooLQaj0Wgs604gf5cvX1ZISIgiIiKUkZGh2rVry9vbO8+ZykWR+YsEgOUMBoPpl3BsbKz4cQoUHuMIsA7GEiqqWbNmafPmzapTp47WrVtXrLYYR0Dx3WvjKL//kABz5EpA4d1rPzOBssA4AqyDsYSKilwJsC332jiydq7Ezl2F1K9fP127dq1Idbdt26aGDRtaXH737t1auHBhnts0+vj46Pnnn9fQoUOL1B8AAAAAAAAAAAAAAAAAtsuurDuAnIxGo2bPnq0XXngh3+/fPXv2rF5//XVNnjxZKSkppdhDAAAAAAAAAAAAAAAAACWNnbuKwWAwyM7O8vlxBoPBonIff/yxvvnmG7Nz7du3V+vWrWVvb6+zZ89q3759pm3oNm3aJHt7e/3rX/+yvPMAAAAAAAAAAAAAAAAAbBqTu4ph2LBhmjt3rlXb3LlzpxYvXmw6rlatmj777DN17drVrFxISIgmTJigiIgISdL69evVoUMHjRo1yqr9AQAAAAAAAAAAAAAAAFA2+FpGG2I0GjVv3jzTscFg0IIFC3JM7JKkFi1aaNmyZXJ2djad++KLL5SUlFQqfQUAAAAAAAAAAAAAAABQspjcZUO2b9+u0NBQ0/Fjjz2mTp065Vm+cePGGjdunOk4KipKq1atKtE+AgAAAICtmDFjhgIDA7Vu3bqy7goAAAAAAADKEXIlAOUJk7tsyJYtW8yOn3rqqQLrjBo1Svb29nm2AQAAAAAAAAAAAAAAAKB8YnKXjUhLS9OePXtMx3Xr1lWbNm0KrFe7dm21a9fOdHz06FFFR0eXRBcBAAAAAAAAAAAAAAAAlCImd9mI0NBQxcXFmY79/Pwsrpu1bHp6uo4cOWLVvgEAAAAAAAAAAAAAAAAofUzushHnz583O27evLnFdVu0aGF2fOHCBav0CQAAAAAAAAAAAAAAAEDZcSjrDpRnZ86c0aRJkxQSEqIbN25Iktzd3dWgQQN16tRJAwYMkK+vr0VtZZ+QVa9ePYv7Ubdu3XzbAgAAAAAAAAAAAAAAAFD+MLmrGE6fPq3Tp0+bnbtz546uXr2qwMBAff755+rVq5feeecdNWzYMN+2/vjjD7PjOnXqWNyP7GUjIiIsrgsAAAAAAAAAAAAAAADANjG5q4Tt2bNHI0aM0EcffaQ+ffrkWS4hIcHsuHLlyhbfI3vZ7G1ZwmAwFLoOUNFlHTeMIaBoGEeAdTCWgOJjHAHFxziquHi/gcLjZyZQfIwjwDoYS0DxMY6A4mMc5Y/JXUVQu3Zt9e/fX926dZOPj488PDzk5OSk2NhYnT59Wtu3b9ePP/6olJQUSdLt27f1t7/9TcuXL1fbtm1zbTP7hCwnJyeL++Ps7JxvW5Zwd3cvdB0Af3JzcyvrLgDlHuMIsA7GElB8jCOg+BhHFQu5ElA8/MwEio9xBFgHYwkoPsYRUHyMo5yY3FVIs2fPVqdOneTgkPOl8/T0lKenp3r16qVx48bplVdeUWhoqCQpOTlZkyZN0pYtW3KduJWcnGx2XJjJXdnLJiUlWVwXAAAAAAAAAAAAAAAAgG1iclchde3a1aJyDRs21LJly/T4448rPDxcknTt2jWtWrVKTz31VI7y2Xffytz1yxLZy7q4uFhcN1NsbGyh6wAVncFgMM0avnXrloxGYxn3CCh/GEeAdTCWgOJjHAHFd6+NI3ajshy5ElB499rPTKAsMI4A62AsAcXHOAKK714bR9bOlZjcVYI8PDw0depUTZ482XRu8+bNuU7ucnV1NTsuzOSu7Lt+ZW/LEuV9YABlzWg0Mo6AYmIcAdbBWAKKj3EEFB/jqGLhvQaKh5+ZQPExjgDrYCwBxcc4AoqPcZSTXVl34F730EMPqUqVKqbj4OBgJSYm5iiXfUJWfHy8xffIXrYok7sAAAAAAAAAAAAAAAAA2BYmd5UwBwcHtW7d2nSclpamyMjIHOVq165tdhwREWHxPa5fv252XKdOnUL2EgAAAAAAAAAAAAAAAICtYXJXKfDw8DA7jomJyVHGy8vL7Dg8PNzi9rNPBGvSpEkhegcAAAAAAAAAAAAAAADAFjG5qxRk/xpGZ2fnHGWyT+4KCQmxuP1Tp06ZHTO5CwAAAAAAAAAAAAAAACj/mNxVCq5cuWJ2XKNGjRxlvL29Va1aNdNxcHCwxe0fPXrU9Nje3l7t27cvfCcBAAAAAAAAAAAAAAAA2BQmd5Ww69ev69y5c6ZjDw8P1apVK0c5BwcH9erVy6zesWPHCmz/jz/+MCvn5+eX6+QxAAAAAAAAAAAAAAAAAOULk7tK2IIFC2Q0Gk3H3bt3l8FgyLXsI488Yna8cuXKAtv/7rvvlJ6ebjp++OGHi9hTAAAAAAAAAAAAAAAAALaEyV0WSklJ0YULFwpVZ82aNfrhhx9MxwaDQU8//XSe5fv3769mzZqZjn/66ScdPHgwz/IXL17UkiVLTMeenp564oknCtVHAAAAAAAAAAAAAAAAALaJyV0WSkpK0uDBgzV58mQFBAQoLS0tz7JRUVGaOXOm3nrrLbPzw4YNU+vWrfOsZzAYNHnyZNOx0WjUyy+/rP379+coGxISomeffVbJycmmc6+88opcXFwK87QAAAAAAAAAAAAAAAAA2CiHsu5AeZKenq5NmzZp06ZNqlKlipo3b64mTZrIzc1Njo6OiouL05kzZxQcHKzU1FSzuh07dtSsWbMKvEffvn01fvx4LV68WJIUFxenZ599Vu3bt1ebNm1kZ2ens2fPat++fWZf9zh06FCNGjXKuk8YAAAAAAAAAAAAAAAAQJlhclcR3blzRwcPHsz3axMzjR49WtOmTZOTk5NFbU+ePFlJSUlavny56dyRI0d05MiRXMsPGjRI77//vmUdBwAAAAAAAAAAAAAAAFAuMLnLQi4uLnrppZd04MABnTp1SikpKfmWd3V11YABA/T000/n+1WMubGzs9M777yjnj17asGCBQoODs61XLNmzfT888/rscceK1T7AAAAAAAAAAAAAAAAAGwfk7ss5OTkpEmTJkmS0tLSdPHiRV2+fFkRERGKj49XWlqaqlatqmrVqsnb21s+Pj6yt7cv1j179+6t3r1769KlSzp16pQiIyOVnp6u2rVrm+4BAAAAAAAAAAAAAAAA4N5kMBqNxrLuBAAAAAAAAAAAAAAAAADAnF1ZdwAAAAAAAAAAAAAAAAAAkBOTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABsEJO7AAAAAAAAAAAAAAAAAMAGMbkLAAAAAAAAAAAAAAAAAGwQk7sAAAAAAAAAAAAAAAAAwAYxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABskENZdwAAylJsbKxCQ0N16dIlxcbGymg0ys3NTfXq1VO7du1UtWpVq9zn8uXLCgkJUUREhDIyMlS7dm15e3urWbNmVmkfqCgYS6hIrl+/rhMnTig8PFwJCQlydnZWzZo11bhxY/n6+srJyalI7TKOcK9LTU1VaGiozp49q1u3bik5OVlVqlSRp6enWrVqpfr16xf7HowjIKfSGBfHjx/X77//rj/++EOVKlVS7dq11aZNG9WuXdtq9wCAwiBXAsoXxhIqEnIloGjIlYCyQa5UMCZ3AahQMjIydOjQIf3yyy8KDAxUaGhonmUNBoO6du2qZ599Vr179y7S/Xbv3q2FCxfq6NGjuV738fHR888/r6FDhxapfcDWvf/++1q+fLnZueHDh2vu3LmFaoexhIoiIyND69ev1zfffKNTp07lWc7R0VF+fn564YUX1LNnT4vaZhzhXvfHH39o8eLF+umnnxQXF5dnOW9vb40ZM0YjR46Uvb19oe7BOEJ5Ex8fr5CQEB0/flzHjx/XiRMndO3aNdP1+vXr69dffy3WPUp6XGRkZGj58uVavny5rly5kuO6nZ2dunbtqtdee01t2rQp0j0AwFLkSkDpIlcCCodcCSg6ciUgJ3Il22IwGo3Gsu4EAJSWBx98UJcuXSp0vUcffVSzZs1SlSpVLCpvNBr1z3/+U998843F7c+dO7fIq2UAWxQcHKzRo0crIyPD7HxhQjjGEiqSq1evasqUKQoODra4zvjx4zV16tR8yzCOUBFs375db731lm7dumVxnTZt2mj+/PmqVatWgWUZRyhv/vvf/2rt2rUKCwvL8W+xrIoTwpXGuIiJidFrr72mwMDAAss6Ojpq8uTJeu655yxuHwAKi1wJKD3kSkDhkCsBRUeuBJgjV7JN7NwFoEKJjo7Oca5Ro0Zq06aNatasKWdnZ0VERGj//v2KiIgwldm0aZMiIyO1ZMkSOTs7F3ifjz/+OMcvo/bt26t169ayt7fX2bNntW/fPmXOr920aZPs7e31r3/9q5jPELANqampmj59er7/6LMEYwkVxblz5/SXv/xFUVFRpnMGg0Ft2rSRr6+vPDw8lJycbNpSP7cVJnlhHOFeFxAQoNdee02pqammcw4ODurSpYuaNWumSpUqKSYmRkePHtXp06dNZY4fP65nnnlGq1atKvA/tDKOUN4cPHgw391krKGkx0Vqaqr++te/6uDBg6ZzDg4O6t27t7y8vBQfH69Dhw7p7NmzpvIffPCBqlatqieeeMJKzxIAzJErAaWDXAkoHHIloOjIlYCcyJVsM1dicheACql+/fp64oknNHz4cNWpUyfH9fT0dP3www+aM2eOkpOTJd39Rfbpp5/qjTfeyLftnTt3avHixabjatWq6bPPPlPXrl3NyoWEhGjChAmmsG/9+vXq0KGDRo0aVdynB5S5RYsWmf7h5+npaRYsWIqxhIoiOjpazz//vNk4GTBggN588001aNAg1zqhoaFau3atqlatmm/bjCPc65KSkjR9+nSzAK5Tp0768MMPVa9evRzl9+/fr9dff9003i5cuKDPPvtMb731Vp73YBzhXuHq6qqWLVvq1KlTSkhIKFZbpTEu5s2bZxbANWvWTAsXLszxu3H9+vV66623TD8HZs6cqTZt2sjHx6fIzw8ACkKuBJQsciXAcuRKQNGRKwGWI1cqe3wtI4AKZejQoXrmmWc0bNgwi74Le/fu3XrppZdMq8QcHR21Y8cO1a5dO9fyRqNRQ4cONYUPBoNBy5cvV6dOnXItf/HiRT322GOmoM/T01Pbt2+Xi4tLUZ4eYBMuXLigxx57TCkpKapUqZJmzJihN99803Tdku3zGUuoSKZMmaKNGzeajl966SVNmjSp2O0yjlARbN682Wy8NGrUSD/++KNcXV3zrHPmzBmNGDFCaWlpkqTKlSsrMDAw1y29GUcoryZNmqSrV6+qdevWatWqlVq3bi0vLy/Z2dmpX79+unbtmqSibZ9fGuMiIiJCAwcOVEpKiiTJw8NDmzZtUvXq1XMtv27dOrPJEv3799eCBQsK9bwAwBLkSkDJI1cCCodcCSg6ciUgd+RKtpkr2ZV1BwCgNK1du1YjRoywKICTpN69e+vRRx81HaempmrHjh15lt++fbvZNpWPPfZYnr+MJKlx48YaN26c6TgqKkqrVq2yqG+ALTIajZo+fbrpH0wvv/yy6tevX+h2GEuoKPbt22cWwPXv398qAZzEOELFsH//frPjZ599Nt8ATpJ8fX3Vv39/03F8fLxOnDiRa1nGEcqrTz75RKtWrdKMGTPk7+8vb29v2dlZJwIqjXHxn//8x/TvSenuf7DKK4CTpGHDhpn1YceOHTpz5ky+9wCAoiBXAkoWuRJQOORKQPGQKwG5I1eyzVyJyV0AKhQHh8J/G23WEE5Snv9Ik6QtW7aYHT/11FMFtj9q1CizUDB7G0B58t133+nQoUOS7m5x+pe//KVI7TCWUFEsWrTI9NjR0dFsNXJxMY5QEfzxxx9mx+3atbOoXvv27c2OIyMjcy3HOAJyKulxYTQatW3bNtOxm5ubBg8eXOA9Ro8ebXa8devWAusAQGGRKwEli1wJKBxyJaB4yJWA0keuVHRM7gKAAtx///1mxzdu3Mi1XFpamvbs2WM6rlu3rtq0aVNg+7Vr1zb7B+PRo0cVHR1dtM4CZeiPP/7Qxx9/LOnuNqozZ86Uo6NjodthLKGiuHLligIDA03HvXv31n333WeVthlHqCgyv+Iok6Xb1FeqVMns2GAw5CjDOAJyKo1xcfLkSbOAvU+fPnJ2di7wHv379zf7t2d+O+MAQGkiVwIsQ64EFA65ElB85EpA6SJXKh4mdwFAAeLj482O81qlGRoaqri4ONOxn5+fxffIWjY9PV1HjhwpZC+BsvePf/xDt2/fliQ9+eSTOVavWIqxhIpi8+bNMhqNpuPsK/qLg3GEiqJBgwZmx9evX7eo3rVr18yOGzZsmKMM4wjIqTTGxeHDh/Oslx8XFxc1b97cdHz27FmzvgJAWSFXAixDrgQUDrkSUHzkSkDpIlcqHiZ3AUABzp49a3Zcp06dXMudP3/e7DjrL4CCtGjRwuz4woULFtcFbMG2bdv0yy+/SJI8PDw0ZcqUIrfFWEJFERwcbHbcsWNHq7XNOEJF0bNnT7Pjn3/+ucA66enpZttq169fXz4+PjnKMY6AnEpjXGS/R/Z6+cneH8YeAFtArgQUjFwJKDxyJaD4yJWA0kWuVDy5LxMCAJisX7/e7LhLly65lsv+A75evXoW36Nu3br5tgXYstu3b+sf//iH6XjatGlyc3MrcnuMJVQUJ0+eND2uXbu2atWqJUm6dOmS1q5dq4CAAF2/fl2JiYmqXr26GjdurO7du+uxxx6Th4dHvm0zjlBR9OnTRz4+Pqb/aLpmzRr169dPffv2zbW80WjUhx9+qN9//910buLEibKzy7nuiXEE5FQa4yL7+ez18pO9PxcuXDDbth8AygK5EpA/ciWgaMiVgOIjVwJKF7lS8TC5CwDyERQUpKCgINNx1apV1aNHj1zLZv3+XinvlZi5yV42IiKiEL0EytaHH36oyMhISVK3bt00dOjQYrXHWEJFcPv2bdO4kaT77rtPaWlp+vLLL7Vw4UKlpaWZlU9ISNC1a9cUEBCgzz//XM8//7xefvllGQyGXNtnHKGisLe31yeffKIxY8YoNjZW6enpevnllzVy5EgNGzZMzZo1U6VKlRQTE6Pg4GAtW7ZMBw4cMNUfNWqURowYkWvbjCMgp9IYF1nv4eDgIE9PT6vfAwBKC7kSUDByJaDwyJUA6yBXAkoXuVLxMLkLAPKQmJio6dOnm537y1/+osqVK+daPiEhwew4r3K5yV42e1uArTp48KBWrVolSXJyctK7775b7DYZS6gIYmNjzY5r1qypt956Sz/99FOBdRMSEvTZZ5/pzJkz+uSTT+TgkPOf9IwjVCReXl5atWqV3n77bQUFBSkjI0Pffvutvv322zzr1KxZU3/72980cuTIPMswjoCcSmNcZD1fqVKlPP+DU3HuAQClgVwJKBi5ElA05EqA9ZArAaWHXKl4cu4RCACQJM2cOdNsa9UmTZro+eefz7N89h/wTk5OFt/L2dk537YAW5SSkqLp06fLaDRKkl566SU1atSo2O0yllAR3L592+z4t99+MwVwLi4ueumll7R+/XodO3ZMhw4d0ooVK/TYY4+Z/SGybds2zZs3L9f2GUeoaO6//34tX75cc+bMKfArXFq0aKEFCxbkG8BJjCMgN6UxLrKez16nINn7w9gDUJbIlYD8kSsBRUeuBFgXuRJQOsiVioeduwAgF19//bV+/PFH07GTk5P+9a9/5ftLIDk52ey4ML+QspdNSkqyuC5QVubPn6+LFy9Kkho3bqzx48dbpV3GEiqC7H8UZIZy7u7uWrZsmZo3b2665uLioo4dO6pjx47q0aOH3njjDWVkZEiSli5dqqFDh8rX19esPcYRKprz589r9uzZ+u233wosGxISoieffFK9e/fWrFmz8tz+m3EE5FQa4yLrPRwdHQvRO8YeANtBrgQUjFwJKDpyJcC6yJWA0kGuVDzs3AUA2WzZskVz5841Ozdr1iy1atUq33rZA7qUlBSL75m9rIuLi8V1gbJw9uxZLVmyxHQ8c+bMQv0jLD+MJVQEeY2XWbNmmQVw2Q0dOlRjx441HRuNRi1dujRHOcYRKpLffvtNI0aMMAVwjo6OGjNmjFasWKGDBw/q5MmTCggI0IIFC9SrVy9Tvd27d2v48OE6f/58ru0yjoCcSmNcZL1HampqIXrH2ANgG8iVgIKRKwHFQ64EWA+5ElB6yJWKh8ldAJDF/v379frrr5tWrkjSlClTNHz48ALrurq6mh0X5hdS9pnK2dsCbElGRoamT59u+kfR8OHD1blzZ6u1z1hCRZDbd8l7eXnpoYceKrDuCy+8YLbiZNeuXWa/tyTGESqOy5cv65VXXlFiYqIkqVq1alqxYoXeffdddezYUdWqVZOjo6M8PT3Vv39/LV68WO+9956pfnR0tCZMmGCqnxXjCMipNMZF1vPZ6xQke38YewBKG7kSUDByJaD4yJUA6yBXAkoXuVLxMLkLAP6/48eP6+WXXzb7wT1u3Di98MILFtXP/gM+Pj7e4ntnL2trvyyArJYvX65jx45JurvV99///nerts9YQkWQWwjXt29fi+rWrFlTbdq0MR3funVLYWFhZmUYR6goPvroI7Ovo5g1a5batm2bb53Ro0dr9OjRpuNLly5p5cqVOcoxjoCcSmNcZD2fmJiY4z80WeMeAFASyJUAy5ArAcVHrgRYB7kSULrIlYqHyV0AICk0NFTjx483+0fcE088UahwoXbt2mbHERERFte9fv262XFe39ENlLWkpCR9+umnpuO///3vqlGjhlXvwVhCReDh4ZHj+969vb0trt+sWTOz4z/++MPsmHGEiuD27dvavn276fj+++/Xww8/bFHd7P+R9aeffspRhnEE5FQa4yLrPdLS0nTjxg2r3wMArI1cCbAMuRJgHeRKQPGRKwGlj1ypeBzKugMAUNYuX76s5557TrGxsaZzDz/8sGbNmlWodry8vMyOw8PDLa6b/ZdXkyZNCnVvoLSkpKSYhdXTp0/X9OnT861jNBrNjtetW6f169ebjocNG6Z//vOfpmPGEioCR0dH3X///Tp//rzpnJubm8X1s5e9deuW2THjCBXBiRMnlJ6ebjru1KmTDAaDRXXr1aunBg0a6OrVq5Kkc+fOKTk5Wc7OzqYyjCMgp9IYF15eXjp06JDZPWrVqmXRPbKHcNn7CwAlgVwJsBy5EmAd5EpA8ZErAaWPXKl42LkLQIX2xx9/6Nlnn1VUVJTpXO/evfXRRx/Jzq5wPyKz/4APCQmxuO6pU6fMjvmHGsqL9PT0Av+XfctTo9GY73XGEiqKpk2bmh0X5vvls5fNGhxIjCNUDDdv3jQ79vT0LFT9rOUzMjLM/oOsxDgCclMa4yL7+cLcI3tZxh6AkkauBBQPuRJQdORKQPGQKwGlj1ypeJjcBaDCio6O1rPPPqtr166Zzj3wwAP67LPPcmxpbAlvb29Vq1bNdBwcHGxx3aNHj5oe29vbq3379oW+P3CvYCyhonjggQfMjrNvgZ+f7KtUqlevbnbMOEJFkD18TkpKKlT9xMREs2NXV1ezY8YRkFNpjIsOHTrkWS8/SUlJOnPmjOnYx8dHVatWtbh/AFBY5EqAbWIsoaIgVwKKh1wJKH3kSsXD5C4AFdKdO3f0/PPP68KFC6Zzbdq00cKFC+Xi4lKkNh0cHNSrVy/T8fXr13Xs2LEC6/3xxx9m5fz8/FSjRo0i9QEoadWqVdPZs2cL9b9vvvnGrI3hw4ebXZ87d67ZdcYSKooBAwaYbfV95MgRi+oZjUazP3rs7e3l6+trVoZxhIog+2cz69dRFCQ1NVWXL182HTs5OeX4Y51xBORUGuOiVatWql27tul4165dSk5OLvAe27dvV2pqqum4f//+BdYB8P/au/Pwmq7G7eN3ZEISJEgQU6UEMVa1Zmruj5qnGqv16GQoqqW8Wi2tmotHtcZWKaqpWVt0UrQoGgmNmUhItEEiqUSG949cOY99Mp2T8YTv57pctXbW3mudk7UT5+5aayO7yJWA7CFXAnIPuRKQM+RKQP4jV8oZJncBeOjcvXtXL730kmH7xho1amjFihVydXXN0bWffvppQ3n9+vVZnrNhwwbDc707d+6coz4ADwLuJTwMypUrZ1hd8sMPPygyMjLL83799VfDs+jr1auX7u8v7iM86GrXrm3YFePw4cOGRyJlZt++fYqNjTWVGzRokG497iMgrby+L+zs7NSpUydTOSoqSjt27LCojfvdfw0AyE3kSoDt417Cw4BcCcgZciWgYJArZR+TuwA8VBISEjR27FgdOXLEdKxq1apavXq1SpYsmePrt2vXTjVq1DCVt27damjL3MWLF7Vy5UpTuWzZsurbt2+O+wEUdtxLeFiMHj3a9Pe4uDi99957mdaPiYnRzJkzDceGDBmSbl3uIzzoihcvrieffNJUjouL04wZM7I87+bNm5o9e7bhWNu2bdOty30EpJUf98ULL7wgJycnU3nevHm6efNmhvW3bNli6EO7du3S7D4AALmBXAkoHLiX8LAgVwKyj1wJKBjkStnH5C4AD43k5GRNmjRJP/30k+mYt7e31qxZozJlyuRKG3Z2dho/fryhzVdeeUWHDh1KU/fUqVN67rnnDFtBjho1Ktvb9wMPEu4lPCyaNm2qNm3amMq7du3Sm2++qejo6DR1r1y5ouHDh+vixYumY3Xr1k2z0iUV9xEeBq+++qqh/O2332rMmDEZrrQMCAjQwIEDFRoaajpWpkwZ9e/fP9363EdAWvlxX5QrV06DBw82lf/55x8NHTpUV69eTVN327Ztmjp1qqns6OiosWPHWvWaAMAS5EpA4cG9hIcFuRKQM+RKQP4jV8o+u+Tk5OSC7gQA5IfQ0NA0s+ft7OxUpIh181y9vb21Z8+eTOvMnTtXy5cvNxx77LHHVK9ePRUpUkTBwcE6ePCg7v8R3K1bN82ZM8eqvgCFwe+//66hQ4eayj179tSsWbMsOpd7CQ+D27dvq3///oZwzc3NTS1btlTlypV17949nTlzRr/99pvhme8eHh76+uuvVaFChUyvz32EB92CBQu0bNkywzEnJyc98cQTqlGjhooXL65bt27pxIkTCgwMNNRzdHTU8uXL1bRp00zb4D5CYRMaGqoOHTqk+7X7t7GXJHt7+3TrrVmzRk888USGbeT1fREfH6/hw4fr6NGjpmOOjo5q3bq1qlWrptjYWB05ckTBwcGG82bMmMHKZgB5glwJKBjkSkDmyJWAnCFXAtIiV7LNXInJXQAeGlevXlW7du1yfB1vb2/98MMPmdZJSkrS+++/r7Vr11p0zf/7v//TrFmz5OzsnOP+AbYmJyEc9xIeFlevXtWYMWMUFBRkUf1q1arpk08+UeXKlbOsy32Eh8GSJUu0dOnSNOFCZjw8PDRr1iy1bt06y7rcRyhscuOzz+eff254RIW5/LgvIiMjNXbsWB0+fDjLug4ODho3bpxGjBhh8fUBwBrkSkDBIFcCskauBOQMuRJgRK5km5jcBeChkZ8hXKqff/5ZS5cu1YkTJ9L9eo0aNTRixAh17949x/0CbFVOQrhU3Et4GNy7d0+rVq3Sxo0bDVt738/T01PDhg3T4MGDrd6Sm/sID7pTp05p9erV+u677wxbdZsrXbq0+vTpo2HDhql06dJWtcF9hMIiP0K4VHl9XyQlJenzzz/XF198oZCQkDRfL1KkiJo0aaJx48apXr162WoDACxBrgQUDHIlwDLkSkDOkCsB/0OuZJuY3AUA+eDy5csKCgpSRESEEhMT5eXlperVq8vX17eguwYUKtxLeBgkJyfr5MmTunjxom7cuCE7Ozt5eHioVq1aqlmzZo6vz32EB118fLxOnTql8+fPKyoqSnfv3pWLi4vc3d1Vu3ZtVatWTXZ2djlqg/sISCuv74v7fz9GRESoaNGi8vLyUv369eXl5ZUrbQCAreLfHkDu4F7Cw4BcCcgZciWgYJArZY3JXQAAAAAAAAAAAAAAAABgg4oUdAcAAAAAAAAAAAAAAAAAAGkxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABsEJO7AAAAAAAAAAAAAAAAAMAGMbkLAAAAAAAAAAAAAAAAAGwQk7sAAAAAAAAAAAAAAAAAwAYxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABsEJO7AAAAAAAAAAAAAAAAAMAGMbkLAAAAAAAAAAAAAAAAAGwQk7sAAAAAAAAAAAAAAAAAwAYxuQsAAAAAAAAAAAAAAAAAbBCTuwAAAAAAAAAAAAAAAADABjG5CwAAAAAAAAAAAAAAAABsEJO7AAAAAAAAAHovUgQAACruSURBVAAAAAAAAMAGMbkLAAAAAAAAAAAAAAAAAGwQk7sAAEC2/f777/L19TX9Wbx4cUF3CVYICwvTggULNHDgQDVr1kx16tQxfD/9/f0LuosWub/PQ4YMKeju4CHg7+9fKO8VAAAAALAl5EqFG7kSkD3kSgCA7HAo6A4AAJBdbdu2VWhoqOFYxYoVtXv3bjk5OeXoWocOHZKHh0eu9BOwRZs2bdJ7772n+Pj4gu4KAAAAAAD5jlwJyD5yJQAAgPzFzl0AgAfK1atXtWHDhoLuBmDTfv75Z02bNo0ADg+tIUOGGFZIAgAAAIBErgRYglwJDztyJQBAQWDnLgDAA+fjjz9Wr1695OrqWtBdAWzSvHnzlJycbCp37dpVffr0Ufny5eXg8L9/Hrq7uxdE9wAAAAAAKDDkSkDmyJUAAADyH5O7AAAPnMjISK1atUpjxowp6K4ANufChQsKDg42lVu3bq158+YVYI8AAAAAALAd5EpAxsiVAAAACgaTuwAAD6TVq1dr4MCBKlOmTEF3BbApgYGBhnKnTp0KqCdA4dWrVy/16tWroLsBAAAAII+QKwHpI1cCco5cCQCQHUUKugMAAOSW9u3bm/4eGxur//73vwXYG8A2/fPPP4ZyuXLlCqgnAAAAAADYDnIlIGvkSgAAAAWDyV0AgAfG6NGjVbRoUVP5q6++0uXLlwuwR4DtiYmJMZQdHNjIFQAAAAAAciUga+RKAAAABYN/dQEAHhienp4aOnSoPv30U0nSvXv3tHDhQi1YsKCAe5Z3IiMjdfz4cYWHhysqKkqlSpVSnTp1VKdOnSzPvXDhggICAhQREaEiRYqobNmyaty4sSpUqJBr/UtKStKJEycUEhKiiIgIOTs7y8vLS40bN5aHh0eutBETE6Njx44pIiJCkZGRsre3l4eHh3x8fOTn56ciRXJ3LvuFCxd09uxZ3bhxQ9HR0XJ3d1eXLl3k5uaWq+1IUnJysoKCgnThwgVFRkYqPj5e7u7u8vLyUqNGjeTi4pKtaxa08PBw/fnnn/r7778VFRUlNzc3ubu7q27duqpUqVKut3f+/HmdOXNG4eHhSkxMlKenp+rUqaNHHnkkR9e9du2aTp8+rWvXrikmJkaJiYkqVqyY3N3d5e3tLV9f3xyNiwd5bFvq3r17On/+vC5evKgbN24oJiZGzs7OKlGihCpVqqR69eqpWLFiBda/nIiLi9OxY8cUFhZm+P5WrlxZ9erVy/WAPC4uTn/88YdCQ0MVGRkpV1dXVahQQY0bN5arq2u2r3v79m2dPn1aly9fVnR0tOLj41W0aFG5ubnJ29tbPj4+8vLyysVXAgAAAOQNciVypQftsze5Uu4gV7IMuVL+IlcCgIcPk7sAAA+UkSNHatOmTbp165Ykaffu3XrhhRcsCqUs5e/vr8mTJ5vKH3zwgXr16mXx+b6+vqa/P/HEE1q7dm2GdYcMGaLDhw+bysHBwZKk06dPa/Hixfrll1907969NOdVr15dU6ZMUdOmTdN8bd++fVq0aJH++uuvdNts3ry5pk6dqmrVqln8mszFxcVpxYoV+uqrr3Tt2rU0X7e3t1fz5s315ptv6tFHH81WG/v379fy5ct17NixdN8DSXJ3d1efPn30n//8RyVLlszymlevXlW7du1M5Z49e2rWrFmSUlbsrl271vQ9uF/9+vVVq1atbL2O9ERGRuqTTz7Rtm3bFBkZmW4dR0dHNWnSRKNHj1b9+vUzvJb5azI3dOjQdI9bO66zkpSUpB07dmjlypUZjj1Jqlq1qoYOHap+/frJ0dExR21u27ZNa9asUVBQULpf9/X11bhx4/TUU09ZfM2kpCR9/fXXWrdunU6fPp1pXTs7Oz366KN66qmn9Nxzz6l06dIWtWFrY/vKlSsaM2aM6dgzzzyjuXPnWvRa7rdkyRItXrzYVB4/frxefPHFNPUiIiL03Xff6ccff9Tx48cVGxub4TUdHBzUsmVLjRgxQo8//nim7S9evFhLlixJ92v3/1w2l97P6Zz8Hjh79qwWL16sn3/+WXfv3k23jpubmzp16qRRo0apfPnyFl130qRJ+uabb0zlffv2qWLFioqKitJHH32kbdu2KSoqKs15Dg4O6tq1q8aPH29VWPbbb79p+fLlOnTokBITEzOt6+XlpVatWmnw4MGqWbOmxW0AAAAA+Y1cKQW5UgpyJXIlcqUU5ErkSuRKAFDweCwjAOCB4ubmppEjR5rKycnJ2fqwaMv8/f3Vt29f7du3L8MP6GfPntXzzz+vzZs3m44lJSVp+vTpeuWVVzINQQ4cOKD+/fsrICAgW/27ceOG+vfvr0WLFqUbwElSYmKifvnlF/Xo0UNffvmlVdePjIzU8OHDNWLECP3+++8ZvgeSdPPmTS1fvlwdO3bUkSNHrGon1Z07d/TSSy9p6tSp6YYUuW3v3r1q37691qxZk2EAJ6WsPNu/f7/69eunadOmKSEhIc/7ll0RERHq37+/Jk6cmOnYk6RLly7p3Xff1TPPPKNLly5lq73ExERNnDhREydOzDCAk1JC7ZdeekmTJ0/OMkSQpKioKA0ZMkRTp07NMoCTUn7+nD17Vp9++qlFY8dWx3bbtm0NAeL333+fbpiTmeTkZENAZG9vrx49eqRbt3PnzpoxY4YOHDiQaQAnSQkJCfrxxx81aNAgffDBBzZ9HyQnJ2vBggXq1q2bvvvuuwwDOEmKjo7W5s2b1alTJ23cuDHbbQYEBKhHjx764osvMvyeJSQkaMuWLerdu3eW92fq65gxY4aGDRumX3/91aJ7Jzw8XF999ZV2795t9WsAAAAA8hO5UgpypRTkSraBXIlciVyJXIlcCQDYuQsA8AAaMmSIvvjiC4WFhUmSDh06pAMHDqh58+YF3LOc27t3r6ZMmaKkpCRJUpUqVeTj46NixYopLCxMJ0+eNH0ITUpK0ttvvy1fX1/VrVtXM2bM0Pr16yVJRYoUUa1atVSxYkXZ2dnpwoULOnPmjKmdqKgojR49Wjt37rRqW+X4+Hi9+OKLpoCiSJEi8vPzk7e3t2kb7PuDlXv37umdd96RnZ2dBgwYkOX1L1++rBdeeEEhISGG4y4uLvLz81OZMmWUmJio0NBQnTp1yvQ+3bp1S8OHD9fHH3+sli1bWvx6kpOTNWnSJP3444+SUlbM+fr6qmLFinJ0dNT169cVGBho8fWysnnzZv2///f/TP1OVblyZdP3+dq1awoICDB88N24caPCwsK0bNmyXN9yO6dCQ0M1ZMgQhYaGGo67uLioXr16Kl26tG7duqXAwEDTymhJunjxogYMGKA1a9ZYvSJr5syZ2rZtm6lctWpV+fj4yNHRUaGhoQoKCjK8x/7+/oqPj9e8efMyve5rr72mo0ePGo4VL15cNWvWlKenp5ycnBQbG6t//vlH58+ftyqosuWx7ejoqO7du2vVqlWSUlZQb9++XYMGDbK4vd9++01Xr141lVu1apXhaj7zRzyUKVNG1apVU6lSpVS0aFHFxMToypUrunDhguE+WLNmje7du6dp06ZZ3K/89NZbb8nf399wzM7OTrVr11bFihWVmJioy5cv6+zZs6avx8XFadq0aYqMjNTLL79sVXuXLl3ShAkTTPdVyZIlVadOHbm7uys2NlaBgYGKiIgw1b9x44ZGjRqlbdu2qXjx4hled9myZWlWnDo4OMjX11cVKlRQsWLFFBcXp9u3b+vChQuGNgAAAIDCgFyJXIlcyXaQK1nGlsc2uVLuIFcCANjWv9IAAMgFTk5OGj16tGFr43nz5qlZs2ays7MrwJ7l3FtvvaWkpCQ1bNhQU6dOTfNYgNDQUE2YMEHHjx+XlLJyZvbs2Ro4cKDWrVsnSerVq5dee+21NB+A//jjD40dO1Y3btyQJF2/fl2rV6/W6NGjLe7fxo0bdfv2bUlS165d9cYbb6RpJyAgQO+8845h5duMGTPUqFEjVa9ePcNr//vvvxo1apQhpHjkkUc0btw4tW/fXvb29ob6ERERWrx4sTZt2iQpJfCbOHGitm7davEW0Xv27FFMTIyklO3Gx44dm2Yr68jISDk5OVl0vcycPn1a77zzjiEcqlWrlqZNm6bHHnssTZsLFy40rLzav3+/Fi1apPHjxxvqlitXTvv27TOVP/vsM33++eem8vz589Pdft/d3T3HrykhIUETJkwwBHDFixfXuHHj1L9/fzk7Oxvq7ty5Ux988IFu3rwpKWUV4dixY+Xv7y8XFxeL2gwODjY9csLPz0/vvPOO6tWrZ6gTHh6uDz/8UDt37jQd27Fjh5o0aaK+ffume939+/frwIEDpnKpUqU0ZcoUPf300xlu83/27Fn9/PPPhpXO6SkMY7tPnz6mEE6Svv76a6tCOPP3oE+fPhnWtbOzU8uWLdW5c2e1atVKnp6e6daLiIjQunXrtHLlStNq1HXr1qlNmzZq1apVmvrDhg1Tz549JaVs3f/nn3+avnb/PWLu/nGaXevWrUsTwHXq1ElvvvmmvL29DcfPnDmjd99917By9qOPPlKdOnWsClpff/113bp1S97e3nrjjTfUoUMHw1hKTk7W9u3bNW3aNP3777+SpJCQEK1evVqvvvpquteMjo7Wxx9/bCrb29vrlVde0dChQ1WiRIl0z4mIiND+/fu1ZcuWQv87GAAAAA8HciVyJYlcKRW5ErlSesiVyJXIlQAg//FYRgDAA6lHjx6qUaOGqRwUFGT4wF1Y3b59W61bt9bnn3+eJoCTJG9vby1fvlxly5Y1HTt8+LDefvttSSkfPD/44IN0P6g3atRI//3vfw0fkvz9/dOsdsqqf5L0/PPPa968eem2U69ePa1bt06PP/646di9e/dMfczI7NmzDatAW7VqpS1btqhTp05pQgpJ8vT01HvvvadJkyaZjt28eVMLFy60+PWkhhTjx4/XrFmz0oQUkuTh4WHVKtSMTJkyxbBdeqNGjfTll1+mCeBS23z33Xf1xhtvGI4vX748zTboDg4OqlixoumP+QflMmXKGL6e+sfS0Csz69evNwXCUkoAt2rVKg0dOjRNsOHg4KDu3btr3bp1hgDw0qVLWrJkicVtpo7Bxx9/XOvXr08TwEmSl5eX5s+fr+eff95wfNasWabzzZmHNIsWLVK3bt0yDOAkqXr16hoxYoR2795tGO/mCsPY9vHxUcOGDU1fCwoKsmirdSllxfaePXtM5bJly6pNmzYZ1t+2bZtWrFihPn36ZBjASSnvw7hx4/Tpp58aVhYvX7483folSpQwjW/z8ZfePZD65/6fp9nx999/a/bs2YZjw4cP16JFi9IEcJJUo0YNrVmzRu3atTMdS05O1pQpUxQfH29xuzdv3lT16tW1efNmde7cOc1YsrOzU7du3dI8Ymbz5s0Z/tzfv3+/4uLiTOWXX35Zo0aNyjCAk1K+T71799batWv10ksvWdx/AAAAoCCRK5ErkSulIFciV0oPuRK5ErkSAOQ/JncBAB5IRYoU0bhx4wzHFi5caAg5CqNSpUpp9uzZma7oc3Nz07PPPms4dvv2bTVr1kwvvvhiptevX7++nnjiCVM5LCzMsN29Jfz8/DRx4sRM6xQrVkzz5s0zbNH8xx9/GFZd3i88PFxfffWVqezt7a1FixapaNGiWfZn+PDhat26tam8fft20ypSSzRt2jTL9y2nfvvtN8Nrd3V11YIFC1SsWLFMz3vhhRf01FNPmcpJSUlas2ZNXnXTKklJSfrss88MxyZMmGAIctLj4+Oj6dOnG45t2rRJd+7csbjt4sWLa/78+VmOj9dff11+fn6m8p07d9KsgkuV+jgOKeU+fPLJJy3uj52dXYb3bGEa2+arT7NaOXp/v+4Pbnr06JHpYx4qVqxocZ8kqVmzZobHbxw+fFjh4eFWXSMvrV+/Xnfv3jWV69WrlyZAN+fg4KDZs2cb/kdGeHi4du3aZXG7Dg4O+uijj+Th4ZFpvfbt2xv+p05YWJguX76cbt377wMpZZWoNSwZ1wAAAIAtIFciV0pFrlQwyJX+h1yJXIlcKQW5EoCHHZO7AAAPrLZt2xpWNYWEhBi2Gy+MBgwYoFKlSmVZr3nz5mmOjRw50qI2WrRoYSifPn3aovNSjR49WkWKZP1PjHLlyql///6GY9988026dTds2GAIUEeNGpVlQHW/4cOHm/5+79497d+/3+JzLX3fcmLLli2G8qBBgyzeBn3ChAmG8s6dO61ahZVXjhw5oqtXr5rK5cqV08CBAy06t1OnToZQ4M6dO9q7d6/FbQ8YMMCi98/e3l6jRo0yHMsohLtfTEyMIVTKicI0tp9++mnDytvt27dbNNbMw7revXtb1a4lOnbsaCgfO3Ys19vILvP7e+zYsRb9jHR1dU0TkloyPlN17NhRPj4+FtW9P8yXpFOnTll03j///GNxfwAAAIDChlzJiFwpBblS/iBXskxhGtvkStlDrgQASMXkLgDAA+311183lJcuXWraNrowatmypUX1qlSpYigXLVo00+27MzvXmg9ZJUuWtLiPktS1a1dD+Y8//ki33sGDB01/t7e3t3pVT6NGjQwruo4ePWrReS4uLmrSpIlVbWWH+evu1q2bxedWr17dsEowLi5OgYGBuda37DJ/TV26dLEoeEjVo0ePTK+XGfNxlZlWrVqpZMmSpvLZs2cVFRWVpl61atVMf793757mzJlj1aMlMlKYxnbx4sXVpUsXU/nWrVuGbfHTc+rUKUOg07hxYz3yyCNWtZsqISFBUVFRunbtmq5evWr4c/9jPyTp/Pnz2Wojt12/fl2hoaGmctmyZdWsWTOLz3/mmWcM294HBAQoISHBonPvX32blfvHtyRFRkZaVG/hwoWF+ncqAAAAkBVypRTkSuRK+Y1cyTKFaWyTK1mPXAkAcL+M960EAOAB0LBhQ7Vr10779u2TlBIorVq1SqNHjy7gnmWPpatl3NzcDOXKlSvL0dExW+das225n59fpttim6tZs6acnZ1Nq9WCg4MVHx9v2Go8Li7OsLV8uXLldPPmTd28edPidqSU15V6TkhIiMX9syY4yo7bt2/rypUrpnKJEiUs/j6natiwoeE9OnnypB577LFc62N2mAeB1vbHfJv9kydPWnSes7OzfH19LW7HwcFBtWvX1qFDhyRJycnJCgoKUtOmTQ31unTpotWrV5vKa9eu1eHDh9WnTx899dRTqlSpksVtpiqMY7tPnz7atGmTqbx582ZDMGfOfHVlnz59LG7rxo0b+vbbb/Xrr7/qzJkzabZuz0x6QWpBML8P6tWrZ9X7nvrz4MyZM5Kkf//9V+fOnVPNmjWzPPfRRx+1uJ37g2hJio6OTrde06ZNVbp0adP/nDlx4oQ6deqk3r17q0OHDqpdu3ae/8wEAAAA8hO5UgpyJXKl/EaulLXCOLbJlaxDrgQAuB+TuwAAD7wJEybop59+UmJioiRp1apVGjhwoEqXLl3APbOe+QeljJgHYSVKlLC4jftX80iyeDWPJFWtWtXiulJKP729vXXhwgVJUmJiom7duiVPT09TnRs3bhi2Fw8NDVW7du2sasfcrVu3LKqXH2PEfCVTlSpV0qwWy4qlq6Pyk3kfrB0b5q/J0pW+lSpVsioIllLe89QQLqO26tatq2HDhumzzz4zHQsODtbMmTM1c+ZMlS9fXg0bNlTDhg3VuHFj1axZM8vvY2Ec2/Xr11eNGjVModChQ4cUGhoqb2/vNHXj4+O1Y8cOU9nNzU2dO3fOso1///1Xixcv1ueff254f6yRUYiU38zHkrX3gSQ98sgjpvc7vWtmxNLfF1La3xkZ/dwvVqyYpk+frjFjxigpKUlSyjhetmyZli1bphIlSqhBgwZq0KCBHn/8cTVo0EDOzs4W9wMAAACwReRK5ErmyJXyHrkSuRK5ErkSuRIAGDH9FQDwwPPx8VHPnj1N5djYWC1durQAe5R92V25kl8rXlxdXa0+x3xF5+3btw1lS0MFa1i63bOLi0uut23OfCWY+fthCfP3PS/eM2uZfx+tfV3Fixc3BAPm18tIXozBVG+99ZYmT56c7mu5du2adu3apZkzZ6pHjx5q3bq1PvzwQ12/fj3Ddgvr2O7du7fp78nJyfL390+33vfff294L7t06aKiRYtmeu2YmBiNGDFCK1euzHYAl9ovW5DT+yC9cyy9F6wN8y3VoUMHrVixIs2jVqSUn2e//PKLFi1apKFDh6pJkyaaMGGCAgIC8qQvAAAAQH4gVyJXMkeulPfIlciVyJXIlciVAMCIyV0AgIfCmDFjDB/+Nm7caNiyHLkjNz70mV8jJx/ECwPzsCAv3sOCkNshiKWvKa9f+3PPPacff/xR77zzjlq0aKHixYunWy88PFyrVq1Shw4dDKsy71dYx3b37t0Nj+Pw9/c3rba7n/nW+X379s3y2nPnztXRo0dNZTs7OzVv3lxTpkzR+vXr9cMPP+jYsWMKDAxUcHCw6U/qI1JsnS3cm7mhefPm2rVrl5YsWaIuXbqoTJky6daLjY3Vjh071LdvX02ePFl3797N554CAAAAuYNcKX+QK1mPXMky5Eq2g1wp+2zh3swN5EoAkD08lhEA8FDw8vLS4MGDtWLFCkkpH34XLlyo+fPn52s/Urfwf1BlZ8tq83PMt/p3d3c3lFu0aKGVK1da3zkbZb7FdXbewzt37mR6zYJQqlQpQ/nOnTvy8vKy+PzY2FjDFt6WPgIiN8ZgVu+fm5ubnn32WT377LNKSEhQcHCwTpw4oaNHj+rgwYOGlZPx8fF6//33ZWdnp6FDhxquU1jHtru7u9q3b6/du3dLksLCwnTw4EG1aNHCVOfq1av67bffTOWaNWuqTp06mV43IiJCGzZsMJWdnZ21dOlSw3UzYn4P2IrcuL+tHZ/5xcHBQR06dFCHDh0kSZcvX9bx48d17NgxHTx4UCEhIYb6/v7+io6O1pIlSwqiuwAAAECOkCvlD3Il65ErpY9cyXaRK1mOXOl/yJUAgJ27AAAPkRdffNHw4WXXrl0KCgqy+jr29vaGsjXBmqXbHhdWly5dsqp+QkKCQkNDTWV7e/s04Y35yp2LFy9mt3s2ycPDw1C29j2U0r4n5tcsCOZ9sPb7Zl6/dOnSFp0XEhJiCO8scfny5Wy1JaUEEX5+fho0aJAWLFiggwcP6tNPP1XdunUN9RYsWJDmUQmFeWz36dPHUP76668NZX9/f8MqW/P66fnpp58MKzVHjBhhUQAnpQR4tsh8LOXG/W3N+MxPVapUUY8ePfTuu+9q79692rJli7p27Wqos2fPHh08eLCAeggAAADkDLlS3iNXsh65UvrIlWwbuZJlyJXIlQDgfkzuAgA8NEqUKKGRI0eaysnJyZo3b57V13F1dTWUzT9YZ+bcuXNWt1eYBAUFWRWA/PXXX4qLizOVfX195eTkZKjj6uqq6tWrm8qhoaHZ+iBrq0qWLKnKlSubylFRUTp//rxV1zh27JihbB4AFQTz1XTHjx+36nzz+pa+pri4OP31118Wt5OQkKBTp06ZynZ2dvLz87P4fHP29vZq3bq11q9fr9q1a5uOx8bG6sCBA4a6hXlsN2/eXN7e3qby3r17TStLk5KS9M0335i+5uTkpG7dumV5TfPX3qZNG4v7Y+34yi/m98Gff/6Z7qMGMmL+86BYsWLy8fHJtf7lpVq1amnevHkaOHCg4fiePXsKqEcAAABAzpAr5T1yJeuRK6WPXMm2kStZhlyJXAkA7sfkLgDAQ2XIkCEqV66cqXzgwAGrV3uYr26xJlj76aefrGqrsLl9+7b2799vcf0dO3YYyo0aNUq3nvkqq02bNlnfORtm/rq3bdtm8bnnz583rBR2dnbOcpvy/GD+mnbu3GlV+LB169ZMr5eZnTt3Wlz3l19+Max8rl69usVb9WcmveDp6tWraeoV1rFtZ2enXr16mcrx8fGmcXvgwAGFhYWZvtaxY0eLtnw33ybezc3Nor4kJiZadc9IShP2x8fHW3W+pcqVK2cIK2/cuGF4rEBWduzYYVjFX69ePTk6OuZqH/Oa+era9O4DAAAAoLAgV8pb5ErZQ66UFrmSbSNXsgy5ErkSANyPyV0AgIeKs7OzRo8ebTg2d+5cwzbPWfH19TVsob9//36LttD/+++/C80H7JxYvHixRWHL9evXtXHjRsOxHj16pFv32WeflYODg6n8xRdf6OzZsznqpy3p3r27obxu3TrduHHDonPNVwl36dIlTcBQEBo3bqyKFSuayteuXdOGDRssOnfPnj0KCAgwlV1dXdW+fXuL296wYYPCw8OzrJeUlKQlS5YYjvXs2dPidrJi/qiN9L4vhXls9+7dW0WK/O/jxObNmw3/TWXJ1vmS0oSfFy5csOi8L774wupgx7ytvNx+3/z+/uijjyz6nRMTE6NPPvnEcCw3x2d+seQ+AAAAAAoLcqW8R65kPXIlI3KlwjG2yZUsQ65ErgQAqZjcBQB46PTs2dOwZXVQUJBhNVBWihUrpgYNGpjKN27c0Nq1azM9JyYmRq+99lqaFUQPoqCgIM2ZMyfTOnfv3tWECRMUGxtrOvbYY49luDKwSpUqhtVccXFxGjlypNWPI4iPj5e/v79V5+SHpk2bqlatWqZydHS0xo8fr7t372Z63po1a7Rv3z5T2c7OTsOGDcuzflqjSJEiGjp0qOHY3LlzDeFaei5cuKC3337bcKxfv35pHluRmdjYWIvevzlz5hhWp7q4uBjG2f3WrFmjyMhIi/uQmJiYZgVxetueF+axXb58eTVr1sxUDg4O1q+//qoffvjBdKxSpUpq0qSJRderWbOmobxq1aos/wfHzz//rLlz51rR6xTm3wvzRxvkpoEDB8rZ2dlUPnHiRJZ9TkxM1OTJk3X9+nXTMU9PT3Xp0iXP+mmJbdu2Wf14D/PV0oVl+38AAAAgI+RKeYtcyXrkSv9DrlR4xja5kmXIlciVACAVk7sAAA8de3t7jRs3LkfX6Nevn6E8e/ZsffbZZ0pISDAcT05O1oEDBzRgwAAdOXLEoi2kC7PU17dq1SpNmDAh3VVuAQEBGjhwoI4ePWo65ujoqOnTp2d67UmTJsnX19dUDgsLU+/evbVgwQJdu3Ytw/Pu3r2rgwcPasaMGWrdurUmT55s7cvKFzNnzjRsi3348GENHDhQf/75Z5q6kZGRmj59uj744APD8REjRqQJMgrSoEGDVL9+fVM5JiZGw4cP17p169JsV56QkKBt27Zp0KBB+ueff0zHq1SpoldffdXiNlNXzh09elSDBg1KN/QLDw/XhAkTtGrVKsPxSZMmqVSpUuled8mSJWrTpo1ee+017dq1S7du3cqwD+fPn9dLL71k+N6VK1cuwzCqMI/tvn37GsoTJ040fG979+4tOzs7i67VqlUrubi4mMpHjx7Vq6++mu57cPPmTc2dO1evvPKK4uPj5eHhYVW/n3zySUN59uzZWr58uU6cOKHLly/r6tWrpj+WrnbOSNmyZfXGG28Yjq1YsULjx49P97WdO3dOzz33nL777jvTMTs7O82YMaPAVyd+++236tKli4YMGaJ169ZlurI1MjJSH374oVavXm06VqRIkTSPlQAAAAAKG3KlvEOulH3kSuRKqQrT2CZXyhq5ErkSAKRyyLoKAAAPnnbt2umxxx7TsWPHsnX+M888oy+//FInTpyQlLIa5v3339fSpUvVoEEDubm5KSoqSkFBQfr7778lSQ4ODpozZ45GjhyZWy/D5vTv31/79+/X6dOntWPHDu3atUt169ZVhQoVdO/ePZ0/f14XL15Mc97UqVNVo0aNTK/t4uKiTz75RM8//7xpW+27d+9q2bJlWrZsmSpVqqRq1arJzc1NiYmJio6OVmhoqK5cuWLR4w0Kmp+fn6ZNm6a3337b9PiBoKAg9evXT1WqVNGjjz4qZ2dnXbt2TSdPnkwT+DZv3lxjx44tiK5nyMHBQfPmzdOQIUNMYcOdO3f07rvvav78+apfv77c3d11+/ZtBQYG6ubNm4bzS5UqpYULF1q1urJmzZry8fHRl19+qcDAQPXt21ePPPKIfHx85OjoqLCwMJ08eTLNIx66du2aJlw3FxcXp927d2v37t2SJG9vb1WpUkUlSpSQk5OToqOjdf78eV25csVwnr29vWbOnGnYJv9+hXlst23bVh4eHqbVp/evQrW3t89wxWp6SpYsqZdfftmw+vDHH3/UL7/8Ij8/P1WqVEkJCQm6fv26AgMDTa+9ePHieu+996wKaxs3bqw6deooMDBQUsq4zGjV4xNPPJHlKvqsDB48WAEBAYbVhjt37tSuXbvk5+enihUrKikpSZcuXdKZM2fSnD9q1Ci1bt06R33ILcnJyTp8+LAOHz4sKeU+rV69ukqVKqVixYrp7t27CgkJ0ZkzZ9KMzxdffFGPPvpoQXQbAAAAyFXkSnmDXCn7yJXIlQrj2CZXsgy5UgpyJQAPOyZ3AQAeWq+//roGDhyYrXPt7e21cOFCw4dmSbp165Z++umnNPWLFSum2bNn28yHqLzi5OSkTz/9VC+88ILOnDmjpKQk/fnnn+muEpRSVlZOmTJFAwYMsOj65cuX1+bNm/X2229r+/bthq+FhIQoJCQky2ukrsCzRf369VOJEiU0efJkw6MFLl++rMuXL2d4Xu/evTV9+nTDCk1bUalSJW3cuFEvv/yyYav6O3fuZLpledWqVfXxxx+rWrVqVrc5depURUVFaefOnZKkixcvphv+purZs6dmzpxpdTuhoaEKDQ3NtE7JkiU1e/ZstWjRItN6hXVsOzk5qXv37oZVdKlatmwpLy8vq673n//8R1euXNGmTZtMxxITExUQEJDuatlSpUppyZIlKl++vNV9X7hwoUaOHGn4GZ6XPvzwQ3l6emrlypWmEDg5OVmBgYGmMNCck5OTJk+enO3fVfnh1q1bOnLkSKZ1HBwc9PLLL2vUqFH51CsAAAAg75Er5T5ypZwhV/ofcqX/seWxTa5kOXIlciUA4LGMAICHVqNGjdS2bdtsn1++fHlt2LBBw4YNU9GiRdOt4+zsrK5du2rr1q3q2LFjttsqTDw9PbVp0ya9+uqrGX4At7e3V8uWLbVlyxY9++yzVl3fxcVFc+fO1datW9WtWzeLHkng6empZ555Rh999FGmwY8t6Ny5s/bu3auhQ4fK3d09w3qOjo5q0aKFvvzyS73//vs2GcCl8vLy0ubNm/Xhhx8atolPT9WqVTV16lRt3749WwGclPKBf/78+Zo1a1amjxPw9fXVxx9/rFmzZsne3j7Ta65evVqjRo1Sw4YN5ezsnGUfKlSooJEjR+r7779XmzZtLOp3YR3bffr0sep4Vt577z3NmTNHVatWzbCOh4eHBg8erJ07d6px48bZaqdSpUraunWr5syZo6efflo+Pj5yc3PLcCVsTtnZ2en111/Xli1b1LFjxwx/b0iSq6urevfurW+//damArgpU6Zo6tSpat26tUXj09XVVT179tS2bdsI4AAAAPDAIVfKG+RKOUOuRK5U2MY2uZJlyJXIlQDALjk5ObmgOwEAQGF39+5d/fHHH7p06ZKio6NVokQJlS9fXo8//rjc3NwKunsFJikpScePH1dISIgiIiLk7OwsLy8vNW7cWKVLl861NoKDg3Xu3Dndvn1bUVFRcnZ2lqurq7y9veXj45Ot1Ve2ICkpSYGBgbpw4YJu3ryp+Ph4ubu7y8vLS40aNbJqW3lbEh4erhMnTujvv/9WdHS0XFxcVLp0adWtW1eVKlXK9fbOnTunM2fOKCIiQgkJCSpbtqzq1q2b7ZDv3r17OnfunK5cuaKIiAjFxMRISgnRPD095evrqypVqsjOzi5H/X6Qx7YlkpOTFRwcrMDAQEVGRsre3l5lypSRt7e3GjRokGdhWX6Ji4vTsWPHFBoaanp97u7uqly5cqF4fcnJyabV32FhYYqOjlZCQoKKFy9u2lK/evXqcnJyKuiuAgAAADaPXCl95Eo5Q66UO8iVCidyJdt+feRKAGA9JncBAAAAAAAAAAAAAAAAgA3isYwAAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANojJXQAAAAAAAAAAAAAAAABgg5jcBQAAAAAAAAAAAAAAAAA2iMldAAAAAAAAAAAAAAAAAGCDmNwFAAAAAAAAAAAAAAAAADaIyV0AAAAAAAAAAAAAAAAAYIOY3AUAAAAAAAAAAAAAAAAANuj/A8cn8sQizkSgAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 511, "width": 1211 } }, "output_type": "display_data" } ], "source": [ "num_observations = data_samples_per_school\n", "fig, axes = plt.subplots(1, 2, figsize=(12, 5), sharex=True, sharey=True)\n", "for ax, trace, level in zip(\n", " axes,\n", " (unpooled_trace, partially_pooled_trace),\n", " (\"no pooling\", \"partial pooling\"),\n", "):\n", " trace.posterior = trace.posterior.assign_coords({\"num_observations\": (\"school_means_dim_0\", num_observations)})\n", "\n", " # plot means\n", " trace.posterior.mean(dim=(\"chain\", \"draw\")).plot.scatter(\n", " x=\"num_observations\", y=\"school_means\", ax=ax, alpha=0.9, label=\"Group's mean estimate\"\n", " )\n", " ax.hlines(\n", " partially_pooled_trace.posterior.school_means.mean(),\n", " min(num_observations) - 1,\n", " max(num_observations) + 1,\n", " alpha=0.4,\n", " ls=\"--\",\n", " label=\"Est. population mean\",\n", " )\n", "\n", " # plot hdi\n", " hdi = az.hdi(trace).school_means\n", " ax.vlines(num_observations, hdi.sel(hdi=\"lower\"), hdi.sel(hdi=\"higher\"), color=\"orange\", alpha=0.5, label=\"Group's HDI interval\")\n", "\n", " ax.set(\n", " title=f\"{level.title()} Estimates\",\n", " xlabel=\"Number of observations\",\n", " ylabel=\"Group Mean Estimates\",\n", " )\n", " ax.legend(fontsize=10, loc='lower right')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice the difference between the unpooled and partially-pooled estimates, particularly at smaller sample sizes: As expected, the former are both more extreme and more imprecise. In the partially-pooled model, estimates in small-sample-size counties are informed by the population parameters – hence more precise estimates. Moreover, the smaller the sample size, the more regression towards the overall mean (the dashed gray line) – hence less extreme estimates. In other words, the model is skeptical of extreme deviations from the population mean in counties where data is sparse." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Key takeaways\n", "- The \"partial pooling\" approach seeks a balance between treating each group entirely independently and pooling all data together. It introduces a hierarchical structure to the modeling, allowing information sharing between groups.\n", "- This approach is particularly useful when dealing with groups of different sizes, as it allows smaller groups to borrow strength from the overall trends observed in the larger dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "- Used ChatGPT for generating data, and equations.\n", "- [Multilevel modelling guide in PyMC](https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/multilevel_modeling.html)\n", "- Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical models. Cambridge university press, 2006. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thank you for reading!\n", "\n", "With ❤,\n", "Sayam" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.18 ('pymc_env')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.18" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "860aa75385c9bb063e1c10c31ae5213d58fc592dc039cb31a73c0e758e6d6a34" } } }, "nbformat": 4, "nbformat_minor": 2 }